tim x biet
\(\left(1^2+2^2+3^2+...+49^2\right)\left(2-x\right)\)=6/5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tim x biet
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
-5.(x+1/5) -1/2.(x-2/3)=3/2x-5/6
-5x + (-1) -1/2x -1/3=3/2x-5/6
-5x-1/2x-3/2x=1+1/3-5/6
x.(-5-1/2-3/2)= 6/6+2/6+(-5/6)
x.(-10/2+(-1/2)+(-3/2))=3/6
x.6/2=1/2
x=1/2:6/2
x=1/6
Vậy x = 1/6
tim xEz biet:
a)\(x^2+\left(y-\frac{1}{4}\right)^4=6\)
b)\(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
c)\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
cách 1:=> (x - 7)^(x+1)= (x-7)^(x+11)
TH1: x-7=0 => x=7 => 0^8=0^18 (TM)
TH2: x-7=1 => x=8 (TM)
TH3: x khác 7 và 8 => x+1=x+11 => vô lý => loại
KL: x = 7 hoặc x=8
( x-7)^( x+1) - ( x-7)^(x+11) = 0
( x-7)^( x+1) - ( x-7)^(x+1)*x^10 = 0
( x-7)^( x+1) (1-x^10) = 0
tới đây dễ òi
cách 3:\(\Leftrightarrow\left(x-7\right)^{x+1}=\left(x-7\right)^{x+11}\)
\(\Leftrightarrow x-7=0\)hoặc x+1=x+11(vô lí)
\(\Rightarrow x=7\)
bai 1: Tim x biet
\(\hept{\begin{cases}x-y=\frac{3}{10}\\y\left(x-y\right)=-\frac{3}{50}\end{cases}}\)
bai 2: Tim x, y biet:
x+\(\left(-\frac{31}{12}\right)^2\)=\(\left(\frac{49}{12}\right)^2\)-x=y2
Bai 9: Tim x,y,z biet:
(x-1)2+(x+y)2+(xy-z)2=0
a) thay \(x-y=\frac{3}{10}\)vào \(y\left(x-y\right)=\frac{-3}{50}\)ta có\(\frac{3}{10}y=\frac{-3}{50}\)=>\(y=\frac{-3}{50}:\frac{3}{10}=\frac{-1}{5}\)=>\(x-y=\frac{3}{10}\Rightarrow x=\frac{3}{10}+\frac{-1}{5}=\frac{1}{10}\)
hôm sau mik giải tip cho
Câu 1: Tim x, y biet:
a) \(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(\dfrac{-1}{8}\right)\)
Câu 2: Tim cac so a,b biet:
\(\dfrac{a}{2}=\dfrac{b}{3}\) va \(a+b=-15\)
Câu 3: Tim x \(\in\) Q biet:
\(\left(x+1\right)\left(x-2\right)< 0\)
Câu 4: Thuc hien phep tinh:
\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9\)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
Tim x biet
k) \(\left[\left(3,75:\frac{1}{4}+2\frac{2}{5}.125\%\right)-\left(\frac{7}{2}.0,8-1,2:\frac{3}{2}\right)\right]:\left(1\frac{1}{2}+0,75\right)x=64\)
Tim x biet neu \(\frac{x-2}{\left(a+3\right)\left(a-5\right)}=\frac{1}{2\left(a+3\right)}+\frac{1}{2\left(a+5\right)}\)
va x khac -3;5
\(VP=\frac{1}{2\left(a+3\right)}+\frac{1}{2\left(a+5\right)}=\frac{2\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{2\left(a+5\right)}{4\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+5\right)+2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left[\left(a+3\right)+\left(a+5\right)\right]}{4\left(a+3\right)\left(a+5\right)}=\frac{\left(a+3\right)+\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{\left(a+a\right)+\left(3+5\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{2a+8}{2\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+4\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(VT=\frac{x-2}{\left(a+3\right)\left(a-5\right)}\)
\(\Rightarrow\frac{x-2}{\left(a+3\right)\left(a-5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(\Rightarrow\frac{x-2}{a+4}=\frac{\left(a+3\right)\left(a-5\right)}{\left(a+3\right)\left(a+5\right)}\Rightarrow\frac{x-2}{a+4}=\frac{a-5}{a+5}\Rightarrow\left(x-2\right)\left(a+5\right)=\left(a-5\right)\left(a+4\right)\)
chịu
tim x biet: \(\frac{2}{\left|x-2\right|+2}=\frac{3}{\left|6-3x\right|+1}\)
thanks cac ban nhieu
tìm x biết
a.\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)6\left(x+1\right)^2=49\)49
b.\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=25\)
c.\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
Tim x,y,z biet:
\(x+1=y+2=z+3và\left(x-\frac{1}{5}\right)\left(y+\frac{1}{3}\right)\left(z-6\right)=0\)