Những câu hỏi liên quan
NV
Xem chi tiết
MH
10 tháng 9 2021 lúc 10:05

x=4

=>x+1=5

A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1

  =x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1

  =x^6-x-1

  =4^6-4-1

  =4091

Bình luận (0)
NM
10 tháng 9 2021 lúc 10:05

\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)

\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)

Bình luận (1)
MH
10 tháng 9 2021 lúc 10:14

b)tương tự

=x^2006-x^2006-x^2005+x^2005+x^2004-...+x^3-x^2-x^2-x-5

=-x-5

=-7-5=-12

Bình luận (0)
TM
Xem chi tiết
TH
10 tháng 1 2021 lúc 11:59

Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).

Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).

Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.

Bình luận (0)
H24
10 tháng 1 2021 lúc 11:44

Không chia có mà làm=niềm tin ah

 

Bình luận (0)
NQ
Xem chi tiết
H24
23 tháng 8 2023 lúc 20:04

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

Bình luận (0)
LP
Xem chi tiết
NK
14 tháng 12 2018 lúc 21:57

chưa chắc bn ơi

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 14:32

Ta có: 

Bình luận (0)
PN
Xem chi tiết
HA
Xem chi tiết
NT
23 tháng 10 2021 lúc 21:50

\(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}\)

\(=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)

\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)

Để đây là phép chia hết thì -3x+7=0

hay \(x=\dfrac{7}{3}\)

 

Bình luận (0)
ND
Xem chi tiết
DK
Xem chi tiết
NT
27 tháng 12 2016 lúc 21:25

Ta có: \(\left(15x-6x+7\right):\left(2x+1\right)=5\)

Áp dụng định lý Bozout, ta có:

\(f\left(\frac{-1}{2}\right)=15\cdot\frac{-1}{2}-6\cdot\frac{-1}{2}+7=\frac{5}{2}\)

Vậy số dư là 2,5

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 8 2018 lúc 3:05

Thực hiện phép chia ta có:

Giải bài 69 trang 31 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy 3x4 + x3 + 6x – 5 = (x2 + 1).(3x2 + x – 3) + 5x – 2.

Bình luận (0)