Vói mọi số tự nhiên n.Chứng tỏ n+1/3n+4 là phân số tối giản
Chứng tỏ \(\frac{3n+1}{n}\)là phân số tối giản cua mọi số tự nhiên
Gọi ƯCLN (3n+1;n) = d ( d thuộc N sao )
=> 3n+1 và n đều chia hết cho d
=> 3n+1 và 3n đều chia hết cho d
=> 3n+1-3n chia hết cho d
=> 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN (3n1;n) = 1
=> phân số 3n+1/n là phân số tối giản
Tk mk nha
gọi d là ƯC(3n+1;n) (1)
\(\Rightarrow\hept{\begin{cases}3n+1⋮d\\n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+1⋮d\\3n⋮d\end{cases}}\)
\(\Rightarrow3n+1-3n⋮d\)
\(\Rightarrow\left(3n-3n\right)+1⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\) (2)
(1)(2) => ƯC(3n+1;n) = {-1;1}
kl :.....
Chứng tỏ rằng với mọi số tự nhiên n thì P= \(\dfrac{3n+2}{6n+5}\) là một phân số tối giản.
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
chứng tỏ phân số\(\frac{3n+2}{2n+1}\)tối giản với mọi số tự nhiên n.
gọi d=ƯCLN(3n+2;2n+1)
lập luận d = 1
kết luận\(\frac{3n+1}{2n+1}\)tối giản
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n
Gọi d là ƯCLN\((3n+2,2n+1)\) \((d\inℕ^∗)\)
Ta có : \((3n+2)⋮d,(2n+1)⋮d\)
\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)
\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)
\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)
Mà \(d\inℕ^∗\)nên d = 1
Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)
Chứng tỏ phân số 3n+2/5n+3 tối giản với mọi số tự nhiên n.
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 3(3n + 2) chia hết cho d = 9n + 6 chia hết cho d
<=> 2(5n +3) chia hết cho d = 10n + 6 chia hết cho d
=> 10n + 6 - 9n + 6 chia hết cho d = 1 chia hết cho d
=> d = 1
<=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
=> Phân số \(\frac{3n+2}{5n+3}\) là phân số tối giản.
gọi d là ưcln của 3n+2 và 5n+3, ta có
﴾3n+2﴿‐﴾5n+3﴿ chia hết cho d
5﴾3n+2﴿‐3﴾5n+3﴿ chia hết cho d
15n+10‐15n‐9 chia hết cho d
15n‐15n+10‐9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 3(3n + 2) chia hết cho d = 9n + 6 chia hết cho d
<=> 2(5n +3) chia hết cho d = 10n + 6 chia hết cho d
=> 10n + 6 - 9n + 6 chia hết cho d = 1 chia hết cho d
=> d = 1
<=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
=> Phân số \(\frac{3n+2}{5n+3}\) là phân số tối giản.
Cấm đứa nào copy bài tao đã làm, tao làm nhanh nhứt
Chứng minh phân thức 3 n 3 n + 1 là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 3n và 3n + 1
⇒ 3n ⋮ d và (3n + 1)⋮ d
⇒ [(3n + 1) - 3n ] = 1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 3/2n + 7
b) 3n + 7/6n + 15
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a) Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
b) Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
Lời giải:
Gọi $d$ là ước lớn nhất của $(n+4,2n-1)$
$\Rightarrow n+4\vdots d; 2n-1\vdots d$
$\Rightarrow 2(n+4)-(2n-1)\vdots d$
$\Rightarrow 9\vdots d$
Để $P$ không tối giản thì $d\neq 1$. Tức là $d=3$ hoặc $d=9$
$\Rightarrow n+4\vdots 3$ hoặc $n+4\vdots 9$
$\Rightarrow n=3k-4$ với $k\in\mathbb{N}>1$
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
n+1/ 2n+3
2n+1/ 3n+2
n/ n+1
a) Gọi d là Ư C L N ( n+1; 2n+3)
ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản
b) Gọi d là Ư C L N ( 2n+1; 3n+2)
ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d
3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản
c) Gọi d là Ư C L N ( n; n+1)
ta có: n chia hết cho d
n + 1 chia hết cho d
=> n +1 - n chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n
Chứng tỏ với n là số tự nhiên thì 2n+1 phần 3n+2 là phân số tối giản
gọi d là ước chung của 2n+1 và 3n+2
ta có 2n+1 chia hết cho d
3n+2 chia hết cho d
=>3n+2-(2n+1) chia hết cho d
=>1n+1 chia hết cho d
mà n+1 chỉ có Ư là 1
=>2n+1 phần 3n+1 là p/s tối giản
gọi UCLN(2n+1;3n+2)=d
ta có: 2n+1 chia heetscho d và 3n+2 chia hết cho d
=>2(3n+2)-3(2n+1) chia hết cho d
=>(6n+4)-(6n+3)chia hết cho d
=>1 chia heetscho d
=>d=1
Vậy phân số 2n+1/3n+2 là phân số tối giãn
~~~hocj giỏi~~~
tại sao n+1 lại có ước là 1????????