Những câu hỏi liên quan
TD
Xem chi tiết
DN
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
YI
Xem chi tiết
H24
18 tháng 7 2017 lúc 15:22

a) biểu thức có nghĩa khi và chỉ khi: \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}+3\ne0\\\sqrt{x}-3\ne0\\x-9\ne0\end{cases}\Leftrightarrow x\ne9}\)    và     \(x\ge0\)

b) \(Q=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

        \(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

        \(=\frac{3x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

       \(=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

        \(=\frac{3\sqrt{x}}{\sqrt{x}+3}\)

c) để Q < 1 thì:

\(\frac{3\sqrt{x}}{\sqrt{x}+3}< 1\)đkxđ:  \(x\ge0\)

\(\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}< 0\)

\(\Leftrightarrow\frac{2\sqrt{x}-3}{\sqrt{x}+3}< 0\)(1)

do \(\sqrt{x}+3>0\forall x\)

\(\Rightarrow\left(1\right)< 0\)khi và chỉ khi \(2\sqrt{x}-3< 0\)

                                              \(\Leftrightarrow2\sqrt{x}< 3\Leftrightarrow\sqrt{x}< \frac{3}{2}\Leftrightarrow x< \frac{9}{4}\)

kết hợp với điều kiện ban đầu \(\Rightarrow Q< 1khi0\le x< \frac{9}{4}\)

         

Bình luận (0)
NN
Xem chi tiết
PD
Xem chi tiết
NT
10 tháng 8 2021 lúc 16:41

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
10 tháng 8 2021 lúc 16:43

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
10 tháng 8 2021 lúc 16:45

Bài 3 : \(x\ge0;x\ne1\)

\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{2+\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

b, Ta có : \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\Rightarrow4\sqrt{x}+8=5\sqrt{x}-5\)

\(\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\)(tmđk )

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
Xem chi tiết