Giải phương trình : \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
giải phương trình \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Điều kiện thì bn tự tìm nhé
\(\left(1+1\right)\left(x-2+4-x\right)\ge\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=>\sqrt{x-2}+\sqrt{4-x}\le2\left(buhihacopxki\right)\)
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
dấu bằng xảy ra khi x=3 (tm)
giải phương trình :\(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
HACK NAO VAI . ai biet gui di
x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)
giải phương trình : \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\) (1) (ĐKXĐ : \(2\le x\le4\) )
Xét vế trái : \(\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)(Áp dụng bất đẳng thức Bunhiacopxki)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le4\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Xét vế phải : \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Do đó, phương trình (1) tương đương với : \(\begin{cases}2\le x\le4\\\sqrt{x-2}+\sqrt{4-x}=2\\x^2-6x+11=2\end{cases}\)\(\Rightarrow x=3\)
Vậy phương trình có nghiệm x = 3
máy tính không cho ra nghiệm nào hết !!!
Giải Phương Trình
a)\(\sqrt{x^2-6x+1}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
b)\(\frac{x^2-6x+15}{x^2-6x+11}=\sqrt{x^2-6x+18}\)
Giải phương trình :
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Với mọi x thuộc tập xác định, theo bất đẳng thức Bunhiacopxki, ta có
\(\sqrt{x-2}+\sqrt{4-x}=1\sqrt{x-2}+1\sqrt{4-x\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=2}\)
còn
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
do đó
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\) \(\Leftrightarrow\) \(\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\\left(x-3\right)^2+2=2\end{cases}\)
\(\Leftrightarrow\) \(x=3\)
Vậy phương trình đã cho có nghiệm duy nhất \(x=3\)
Giải phương trình và hệ phương trình sau:
a. \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)
b. \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)
a: \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)
=>\(\sqrt{\left(x+3\right)^2}=\sqrt{\left(3+\sqrt{2}\right)^2}\)
=>\(\left|x+3\right|=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)
=>\(\left[{}\begin{matrix}x+3=3+\sqrt{2}\\x+3=-3-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-6-\sqrt{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-2y=8\\x+2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y+x+2y=8-3\\2x-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\cdot1-4=-2\end{matrix}\right.\)
\(a,\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(b,\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Giải phương trình
a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)
Dấu = xảy ra khi \(x=-1\)
b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có
\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)
Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có
\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)
Thôi làm tiếp đi làm biếng quá.
a)√3x2+6x+7+√5x2+10x+14=4−2x−x2
\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)
\(\Leftrightarrow-x^2-2x+4\)
Thế vào ta được:
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)
\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)
b)√x−2+√4−x=x2−6x+11
\(\Leftrightarrow\sqrt{x}-x=x^2-6x+11\)
\(\Leftrightarrow\sqrt{x}-x\)
\(\Leftrightarrow x^2-6x+11\)
\(\Leftrightarrow-x^2+5x+\sqrt{x}=11\)
\(\Leftrightarrow\sqrt{x}-x=\left(x-6\right)x+11\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)\sqrt{x}=x^2-6x+11\)
Tới đây thì đơn giản rồi nhé!
Giải phương trình:
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
bài 1 :điều kiện\(4\le x\le6\)
ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)
\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)
bài 2 :điều kiện : \(2\le x\le4\)
ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)
\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)
giải phương trình
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Theo bất đẳng thức Cô-Si, ta thấy \(VT^2=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\le2+x-2+4-x=4\to VT\le2\). Mặt khác, \(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\ge VT\to x=3\) là nghiệm duy nhất của bài toán.