Tìm cặp số nguyên (x, y) biết
a) (2+x). ( -1+2y) = 5
b) 3xy - y + 3x = 5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm cặp số nguyên (x,y) biết:
a) (2+x) (-1+2y) = 5
b) 3xy-y + 3x = 5
Tìm các cặp số nguyên x, y biết
a) x.y= -21
b) (x+5)(y-3)=14
c)xy-2x=-19
d)(2x-1)(2y+1)=-35
a.
$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$
Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$
b.
$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$
Do đó:
$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$
Đến đây thì đơn giản rồi.
c.
$x(y-2)=-19$, bạn làm tương tự
d. Tương tự
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(3x^2+3xy-17=7x-2y\)
\(3x^2+3xy-17=7x-2y\)
\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)
\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)
\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)
\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)
\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)
Tìm cặp số nguyên x,y biết:
(3x-1).y = -123xy - 3x - y = 05xy - 5x + 2y = -16(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ \(\mp1;2;3;4;6;12\) }=> ta xét từng trường hợp : ....
bài 1: tìm đa thức M biết
a, \(M+x^2\)\(-3xy-y^2\)=\(2x^2\) \(-y^2+xy\)
b,\(x^2y^2-2x^2y^3+2x^2-y^3-P=x^2y^3-3x^2y^2-x^2\)
bài 2: tìm nghiệm của các đa thức sau
a, \(5\left(x-2\right)-2\left(x+3\right)\)
b, \(5x^2-125\)
c,\(2x^2-x-3\)
giúp mik vs ạ
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
Tìm tất cả các cặp số nguyên (x,y):
\(\text{x^2+2y^2+3xy+3x+5y=15}\)
Ta có: \(x^2+2y^2+3xy+3x+5y=15\)
\(\Leftrightarrow x^2+2y^2+3xy+3x+5y+2=17\)
\(\Leftrightarrow\left(x^2+xy+2x\right)+\left(2xy+2y^2+4y\right)+\left(x+y+2\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17=1.17=17.1=\left(-1\right)\left(-17\right)=\left(-17\right)\left(-1\right)\)
Thế vô rồi tìm ra nha bạn!
tìm các cặp số nguyên x,y thoả mãn
a.x-y=xy+1
b. xy-x+2(y-1)=13
c. xy+ 3x-2y-7=0
d. xy -x-y=2
e. 2x2 +3xy-2y2=7
mong mọi người giúp đỡ mk!!!
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
Tìm các cặp số nguyên x, y thoả mãn : X^3 + 3XY + 2Y - 5 = 0
Tìm các cặp số nguyên x;y biết
a) (x-1)(y+2)=7
b)(x-2)(3y+1)=17
Giải:
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
y+2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\)
b) \(\left(x-2\right)\left(3y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng giá trị:
x-2 | -17 | -1 | 1 | 17 |
3y+1 | -1 | -17 | 17 | 1 |
x | -15 | 1 | 3 | 19 |
y | \(\dfrac{-2}{3}\) (loại) | -6 (t/m) | \(\dfrac{16}{3}\) (loại) | 0 (t/m) |
Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)
Ko ghi lại đề nhé
a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)
\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)
\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)
\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)
\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)
Bạn tự kết luận hộ mk nha