Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NM
Xem chi tiết
ST
29 tháng 7 2018 lúc 19:23

Đặt x/2=y/3=z/4=k => x=2k,y=3k,z=4k

Ta có: xy+yz+xz=2k.3k+3k.4k+4k.2k=6k2+12k2+8k2=26k2=104

=>k2=4 =>k=2 hoặc k=-2

Với k=2 => x=4,y=6,z=8

Với k=-2 =>x=-4,y=-6,z=-8

Bình luận (0)
CQ
Xem chi tiết
H24

https://lazi.vn/users/dang_ky?u=kieu-anh.pham4

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
HK
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Bình luận (0)
DT
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Bình luận (0)
NV
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Bình luận (0)
MT
Xem chi tiết
VL
11 tháng 6 2016 lúc 17:46

chứng minh cái gì đấy hả bạn ơi ?

Bình luận (0)
MT
11 tháng 6 2016 lúc 17:47

akl quên vế sau

Bình luận (0)
TN
13 tháng 6 2016 lúc 19:21

bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx 

Bình luận (0)
TA
Xem chi tiết
H24
5 tháng 6 2019 lúc 22:03

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

Bình luận (0)
LD
6 tháng 6 2019 lúc 7:57

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

Bình luận (0)
V0
Xem chi tiết
H24
29 tháng 7 2019 lúc 20:45

#)Giải :

Bài 1 :

a) Ta có :

\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)

\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)

Vậy x = 14; y = 20; z = 32

Bình luận (0)
LM
Xem chi tiết
KS
1 tháng 1 2020 lúc 10:22

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)

\(\ge\frac{\left(x+y+z\right)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\left(1\right)\)

Áp dụng BĐT : AM - GM :

\(\sqrt[3]{x^3yz}\le\frac{x^2+xyz+1}{3};\sqrt[3]{y^3xz}\le\frac{y^2+xyz+1}{3};\sqrt[3]{z^3xy}\le\frac{z^2+xyz+1}{3}\)

\(\Rightarrow\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le\frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)

Theo BĐT AM - GM :

\(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow3\sqrt[3]{x^2y^2z^2}\le3\Leftrightarrow xyz\le1\)

Do đó : \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le3\left(2\right)\)

Tư (1) , (2) và sử dụng hệ quả :
\(x^2+y^2+z^2\ge xy+yz+zx:\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{3}=\frac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{3}\ge\frac{3\left(xy+yz+xz\right)}{3}\)\(=xy+yz+xz\)

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
LL
15 tháng 5 2020 lúc 17:04

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

Bình luận (0)
 Khách vãng lai đã xóa
LK
Xem chi tiết