Những câu hỏi liên quan
NH
Xem chi tiết
AH
8 tháng 10 2021 lúc 10:07

Lời giải:
a. Xét hiệu:

$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$

$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$

$\Rightarrow x^3+y^3\geq xy(x+y)$

Dấu "=" xảy ra khi $x=y$

b.

Áp dụng BĐT phần a vô:

$x^3+y^3\geq xy(x+y)$

$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$

$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$

Hoàn toàn tương tự với các phân thức còn lại suy ra:

$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (0)
DK
Xem chi tiết
TN
Xem chi tiết
PV
Xem chi tiết
KV
Xem chi tiết
PQ
29 tháng 4 2019 lúc 15:28

Ta có : 

\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)

\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)

\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)

\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)

\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm ) 

Bình luận (0)
TD
Xem chi tiết
CN
24 tháng 3 2022 lúc 11:59

lỗi rồi bạn nhé

Bình luận (0)
NA
Xem chi tiết
VT
Xem chi tiết
TC
20 tháng 11 2021 lúc 15:41

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Bình luận (0)
TC
20 tháng 11 2021 lúc 15:46

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

Bình luận (1)
NA
Xem chi tiết