Những câu hỏi liên quan
DY
Xem chi tiết
ST
14 tháng 1 2018 lúc 17:04

Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
PL
8 tháng 2 2018 lúc 9:36

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

Bình luận (0)
DN
Xem chi tiết
DD
Xem chi tiết
TN
24 tháng 1 2015 lúc 15:14

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

nhớ chọn câu trả lời của mình nhe

Bình luận (0)
TT
Xem chi tiết
ND
16 tháng 11 2014 lúc 9:09

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

 

Bình luận (0)
H24
Xem chi tiết
PT
25 tháng 1 2018 lúc 19:51

chứng minh bài này bằng phản chứng

phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)

muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

mà với n>1 =>n-1>0=>mâu thuẫn

Bình luận (0)
DT
8 tháng 1 2024 lúc 21:55

Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

(�+1)2�2[(�−1)2+1]=�2

Muốn pt trên đúng thi (�−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

Mà với n>1 =>n-1>0=>mâu thuan

Bình luận (0)
HD
Xem chi tiết
VT
28 tháng 3 2023 lúc 21:15

`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)` 

Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.

`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`

`<=> (n^2+1)(n-1)^2 = a^2`.

Vì `(n-1)^2` chính phương, `a^2` chính phương.

`=> n^2+1` chính phương.

Đặt `n^2+1 = b^2(b in NN)`.

`=> (b-n)(b+n) =1`

Mà `b, n in NN`.

`=> {(b-n=1), (b+n=1):}`

`<=> {(b=1), (n=0):}`

Vậy `n = 0`.

Bình luận (2)
BH
Xem chi tiết
NT
7 tháng 8 2018 lúc 17:06

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Bình luận (0)
DL
Xem chi tiết
H24

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Bình luận (0)
H24

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Bình luận (0)
NT
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Bình luận (0)
BV
Xem chi tiết