Cho a,b,c khac 0 va a+b+c=0. Tính (1+a/b)(1+b/c)(1+c/a)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a, b>0 va c khac 0. cmr neu 1/a+1/b+1/c=0 thi can(a+b)=can(b+c)+can(c+a)
cho a b c khac 0 va a-b-c=0 tinh gia tri bieu thuc A=(1-c/a) (1-a/b) (1+b/c)
cho a,b,c khac 0 va a+b-c/c =b+c-a/a=c+a-b/b tinh p=(1+b/a)(1+c/b)(1+a/c)
Ta có \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=> \(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
b + c = -a
a + c = -b
Khi đó P = \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> a = b = c
Khi đó P \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 thì P = -1
khi a + b + c \(\ne\)0 thì P = 8
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0
cho ba số a,b,c khac 0 va đôi một khác nhau thỏa mản 1/a + 1/b + 1/c=0
Tính A= a^2/a^2+2bc + b^2/b^2+ 2ac + c^2/c^2+2ab
Giusp mik với please . Mai thi rùi
cho a/b=c/d khac 1 va a,b,c,d khac 0. chung minh (a-b)^2/(c-d)^2=ab/cd
Cho a,b,c khac nhau va khac 0 : a+1/b=b+1/c=c+1/a=k
CMR: k=1 hoac -1
LAM ON GIUP EM BAI NAY VOI !!!!!!!!!!!!
cho a,b,c khac 0 va\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)
Theo đề ra\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Mà: a + b + c khác 0 => a = b = c
=> P = (1 + 1)(1 + 1)(1 + 1) = 2 . 2 . 2 = 8
cho a,b,c khac 0 va a+b+c=0 . tinh Q=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
a + b + c = 0 => c = -a - b ; b= -a - c ; a = - b - c
Thay vào Q ta có :
\(Q=\frac{1}{a^2+b^2-\left(a+b\right)^2}+\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{a^2+c^2-\left(a+c\right)^2}\)
\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{c^2+a^2-c^2-a^2-2ac}\)
\(Q=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c+a+b}{-2abc}=0\)