Những câu hỏi liên quan
TP
Xem chi tiết
HK
Xem chi tiết
MT
15 tháng 6 2015 lúc 20:20

1) tìm giá trị nhỏ nhất của M = x(x-4) + 13

M=x(x-4)+13=x2-4x+13

=x2-4x+4+9

=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)

Dấu "=" xảy ra khi x-2 =0

                         <=>x=2

Vậy giá trị nhỏ nhất của M là 9 tại x=2

2) tìm giá trị lớn nhất của P = x(10-x) +6

 P = x(10-x) +6=10x-x2+6=-x2+10x-25+31

                                    =-(x2-10x+25)+31

                                    =-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)

Dấu = xảy ra khi x-5=0

                      <=>x=5

vậy giá trị lớn nhất của P là 31 tại x=5

Bình luận (0)
TC
Xem chi tiết
NT
9 tháng 2 2021 lúc 12:36

a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)

\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)

Dấu '=' xảy ra khi 2x-4=0

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2

b) Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)

\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)

Dấu '=' xảy ra khi x+2=0

hay x=-2

Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Bình luận (0)
NT
Xem chi tiết
VV
Xem chi tiết
NH
15 tháng 6 2015 lúc 11:34

\(M=x^2-4x+4+9=\left(x-2\right)^2+9\ge9\Rightarrow MinM=9\Leftrightarrow x=2\)

\(P=10x-x^2+6=-\left(x^2-10x+25\right)+25+6=31-\left(x-5\right)^2\le31\Rightarrow MaxP=31\Leftrightarrow x=5\)

Bình luận (0)
TM
Xem chi tiết
BD
2 tháng 1 2017 lúc 10:34

102 = 10 . 10 = 100

100 - x4 = giá trị nhỏ nhất 

Muốn biểu thức trên có giá trị nhỏ nhất thì x = 1

100 - 1 = 99

đ/s : D = 99

Bình luận (0)
BH
2 tháng 1 2017 lúc 10:36

D=10^2-x^4

 =100-x^4

 Ta thấy 100-0=100 có giá trị lớn nhất 

Nên x=0

Bình luận (0)
PH
2 tháng 1 2017 lúc 10:52

Giá trị lớn nhất của D là 99k mình nha

Bình luận (0)
VN
Xem chi tiết
LA
Xem chi tiết