Những câu hỏi liên quan
NL
Xem chi tiết
NT
20 tháng 8 2021 lúc 20:23

1: Ta có: \(\widehat{BAD}+\widehat{B}=90^0\)

\(\widehat{BCE}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAD}=\widehat{BCE}\)

2: Ta có: \(\widehat{AHE}+\widehat{BAD}=90^0\)

\(\widehat{ABD}+\widehat{BAD}=90^0\)

Do đó: \(\widehat{AHE}=\widehat{ABD}\)

Bình luận (1)
H24
20 tháng 8 2021 lúc 21:04

câu 3:

Xét tam giác AEH vuông tại E: góc AHE+ góc EAH= 90 độ

                                                  60 độ +góc EAH=90 độ

                                                           góc EAH=30 độ (1)

Ta có: góc A= góc EAH+ góc HAC= 30 độ +45 độ= 75 độ 

Xét tam giác ADB vuông tại D có: góc B + góc EAH= 90 độ

                                                     góc B= 90 độ - 30 độ= 60 độ

lại có: góc BAC+  góc B + góc ACB= 180 độ (đ/ lý tổng ba góc trong 1 tam giác)

=> góc ACB= 180 độ-( 75 độ + 60 độ )= 45 độ

 

 

Bình luận (1)
DT
Xem chi tiết
TM
24 tháng 5 2022 lúc 16:09

1. \(450\%+3=\dfrac{9}{2}+3=\dfrac{15}{2}\)

2. \(\dfrac{1}{4}-2,75+2=0,25-2,75+2=-0,5\)

3. \(\dfrac{3}{10}+2,7=0,3+2,7=3\)

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
NT
31 tháng 8 2021 lúc 1:22

1: Xét ΔAOC và ΔBOD có 

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

OC=OD

Do đó: ΔAOC=ΔBOD

Suy ra: \(\widehat{ACO}=\widehat{BDO}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Bình luận (0)
NL
Xem chi tiết
PT
30 tháng 8 2021 lúc 10:21

1. Vì N là trung điểm của AC do đó AN = CN

    Ta có P là điểm kéo dài từ A cắt tia MN nên M, N, P là 3 điểm thẳng hàng

     \(\Rightarrow\)N là trung điểm của MP và MN = NP

    Xét \(\Delta PNA\) và \(\Delta MNC\) ta có :

            AN = NC (cmt)

            \(\widehat{PNA}\) = \(\widehat{MNC}\) ( hai góc đối đỉnh )

            MN = NP (cmt)

    \(\Rightarrow\Delta PNA=\Delta MNC\) ( c.g.c )

    \(\Rightarrow AP=MC\) ( hai cạnh tương ứng )

2. Xét \(\Delta ANM\) và \(\Delta PNC\) ta có :

             AN = NC (cmt)

             \(\widehat{ANM}\) = \(\widehat{PNC}\) ( hai góc đối đỉnh )

              MN = NP (cmt)

     \(\Rightarrow\Delta ANM=\Delta PNC\) ( c.g.c )

     \(\Rightarrow AM=PC\) ( hai cạnh tương ứng )

     \(\Rightarrow AM\)//\(PC\)

     Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) là tam giác cân tại A

     Mà M là trung điểm của BC \(\Rightarrow BM=MC\) nên AM là đường trung trực của đoạn thẳng BC hay AM ⊥ BC

     Áp dụng theo quan hệ giữa tính vuông góc và tính song song "nếu a//b và c⊥a thì b⊥c"

     Từ đó ta suy ra PC ⊥ BC

2. Vì AP = MC nên AP = BM ( cùng MC )

    Điểm I được nối qua N và nằm trên đoạn thẳng AM nên ba điểm A, I, M thẳng hàng ⇒ I là trung điểm của AM và AI = IM

    Xét \(\Delta AIP\) và \(\Delta MIB\) ta có :

              AP = PM (cmt)

              AI = IM (cmt)

     \(\Rightarrow\Delta AIP=\Delta MIB\) ( trường hợp bằng nhau hai cạnh góc vuông của tam giác vuông )

*Thưa bạn, câu 4 mình không biết giải nên mong bạn thông cảm. Nếu bài mình có chỗ nào không đúng thì bạn sửa lại giúp mình nhé!

Bình luận (2)
NT
30 tháng 8 2021 lúc 15:15

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Bình luận (0)
NL
Xem chi tiết
NT
31 tháng 8 2021 lúc 1:23

1: Xét ΔABC có AB=AC

nên ΔBAC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

Bình luận (0)
NL
Xem chi tiết
LL
20 tháng 8 2021 lúc 19:30

Bài 1: 

1) Kẻ tia Cx//AB//DE

Ta có: Cx//AB

\(\Rightarrow\widehat{BAC}+\widehat{ACx}=180^0\)(2 góc trong cùng phía)

\(\Rightarrow\widehat{ACx}=180^0-\widehat{BAC}=180^0-140^0=40^0\)

Ta có: Cx//DE

\(\Rightarrow\widehat{xCD}+\widehat{CDE}=180^0\)( 2 góc trong cùng phía)

\(\Rightarrow\widehat{xCD}=180^0-\widehat{CDE}=180^0-150^0=30^0\)

\(\Rightarrow\widehat{ACD}=\widehat{ACx}+\widehat{xCD}=40^0+30^0=70^0\)

2) Ta có AB//DE(gt)

         Mà DE⊥MN

=> AB⊥MN =>\(\widehat{AMN}=90^0\Rightarrow\dfrac{1}{2}\widehat{AMN}=45^0\Rightarrow\widehat{AMP}=45^0\) (do MP là tia phân giác \(\widehat{AMN}\))

Ta có AB//DE

=> \(\widehat{AMP}+\widehat{DPM}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{DPM}=180^0-\widehat{AMP}=180^0-45^0=135^0\)

Bình luận (1)
LL
20 tháng 8 2021 lúc 19:41

Xét tam giác BIC có:

a)\(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\left(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\right)=180^0-\dfrac{180^0-\widehat{BAC}}{2}=180^0-\dfrac{180^0-60^0}{2}=120^0\)

b) Ta có: FC//AD(gt)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{FCB}=\widehat{ADC}\\\widehat{CAD}=\widehat{ACF}\end{matrix}\right.\)

Mà \(\widehat{FCB}=\widehat{ACF}\)(CF là tia phân giác \(\widehat{ACB}\))

\(\Rightarrow\widehat{ADC}=\widehat{CAD}\)

 

Bình luận (1)
LL
20 tháng 8 2021 lúc 19:47

c) Xét tam giác BFI có: 

\(\widehat{BFC}+\widehat{ABI}=\widehat{BIC}=120^0\left(1\right)\)(tính chất góc ngoài tam giác)

Xét tam giác ABE có:

\(\widehat{BAC}+\widehat{AEB}+\widehat{ABI}=180^0\)(tổng 3 góc trong tam giác)

\(\Rightarrow\widehat{AEB}+\widehat{ABI}=180^0-\widehat{BAC}=180^0-60^0=120^0\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\widehat{BFC}=\widehat{AEB}\)

Bình luận (2)
NL
Xem chi tiết
NT
30 tháng 8 2021 lúc 14:57

4: Xét ΔAMC có 

I là trung điểm của AM

N là trung điểm của AC

Do đó: IN là đường trung bình của ΔAMC

Suy ra: IN//MC

hay IN//BC

Bình luận (1)
NL
Xem chi tiết
NT
31 tháng 8 2021 lúc 1:13

1: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

Ta có: ΔBAC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC

nên AH là đường cao ứng với cạnh BC

Bình luận (0)