Những câu hỏi liên quan
N6
Xem chi tiết
TH
2 tháng 12 2016 lúc 22:56

Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k      ( k \(\in\)Z , k khác 0 )

=>   a = bk  ;  c = dk

Ta có:

    \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)        (1)

     \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)             (2)

Từ (1) và (2) suy ra:    \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

Bình luận (0)
N6
2 tháng 12 2016 lúc 21:07

Ai giúp mình với

Bình luận (0)
TH
2 tháng 12 2016 lúc 22:57

nhớ nha

đảm bảo bài đó đúng 100%

Bình luận (0)
HB
Xem chi tiết
NN
16 tháng 10 2016 lúc 15:53

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)

\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Bình luận (1)
QV
20 tháng 10 2016 lúc 10:01

Ta co:a^2+b^2•cd=c^2+d^2•ab=>(a+b)^2•ab=(c+d)^2•cd=>(a+b)^3=(c+d)^3=>a•(b^3)=c•(d^3)=>a/c=b^3/d^3=>a/c=b/d=>a/b=c/d. Do la dieu Phai Chung minh

Bình luận (0)
H24
Xem chi tiết
VT
24 tháng 1 2020 lúc 18:51

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}.\)

\(\Rightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)

\(\Rightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\)

\(\Rightarrow\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\)

\(\Rightarrow ac.\left(ad-bc\right)+bd.\left(bc-ad\right)=0\)

\(\Rightarrow ac.\left(ad-bc\right)-bd.\left(ad-bc\right)=0\)

\(\Rightarrow\left(ad-bc\right).\left(ac-bd\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\left(đpcm\right).\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\)

Vậy \(\frac{a}{b}=\frac{c}{d}.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
SG
1 tháng 11 2016 lúc 21:22

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)

Bình luận (0)
DH
1 tháng 11 2016 lúc 21:33

 

\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được

Chúc bạn học tốtleuleu

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
NQ
3 tháng 1 2018 lúc 20:13

Đặt a/b=c/d=k

=> a=bk ; c=dk

Khi đó : a^2-b^2/c^2-d^2 = b^2k^2-b^2/d^2k^2-d^2 = b^2.(k^2-1)/d^2.(k^2-1) = b^2/d^2

Mà a/b=c/d => b/d = a/c => b^2/d^2 = a.b/c.d

=> a^2-b^2/c^2-d^2 = ab/cd

=> ĐPCM

Tk mk nha

Bình luận (0)
LH
Xem chi tiết
ST
1 tháng 10 2017 lúc 10:15

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 1 2019 lúc 19:16

các bạn giai giup mk bai nay voi 1k cho ai đúng thank nhung bạn giúp đỡ

Bình luận (0)
NH
Xem chi tiết
HH
26 tháng 12 2019 lúc 11:31

a) Đặt  \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

Bình luận (0)
 Khách vãng lai đã xóa
CD
26 tháng 12 2019 lúc 16:14

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

Bình luận (0)
 Khách vãng lai đã xóa