Tìm giá trị nhỏ nhất của biểu thức:\(\left(x^2-9\right)+\left|y-2\right|+10\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
tìm giá trị nhỏ nhất của biểu thức \(M=\left|x-2y+10\right|+\left(y-8\right)^2+2014\)
GTNN của M =2014
dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=2y-10\\y=8\end{cases}}\)
\(\hept{\begin{cases}x=15\\y=8\end{cases}}\)
Vì \(|x-2y+10|+\left(y-8\right)^2\ge0\)\(\forall x,y\)
\(\Rightarrow M\ge2014\)\(\Rightarrow minM=2014\Leftrightarrow\hept{\begin{cases}x-2y+10=0\\y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-16=-10\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Vậy \(minM=2014\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Cho x-y=2, tìm giá trị nhỏ nhất của biểu thức C= \(\left|2x+1\right|+\left|2y+1\right|\)
\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)
\(C_{min}=4\)
Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1-x^2y^2\right)^2\)
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
Cho x,y là các số thực thỏa mãn:\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức :A=x+y+1.
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
1) Tìm giá trị nhỏ nhất của biểu thức:
\(A=3\left|2x-1\right|-5\)
\(B=x^2+3\left|y-2\right|+1\)
2) Tìm giá trị lớn nhất của biểu thức:
\(C=10-5\left|x-2\right|\)
\(D=5-\left(2x-1\right)^2\)
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
Tìm giá trị nhỏ nhất của biểu thức :
\(B=\left(x^2-9\right)^2+|y-2|+10\)
Ta có: (x2 - 9)2 \(\ge\)0 \(\forall\)x
|y - 2| \(\ge\)0 \(\forall\)y
=> (x2 - 9)2 + |y - 2| + 10 \(\ge\)10 \(\forall\)x; y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\) => \(\hept{\begin{cases}x^2=9\\y=2\end{cases}}\) => \(\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
Vậy Min của B = 10 tại \(\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
Với mọi x,y. Có: (x^2-9)^2 lớn hơn hoặc = 0
|y-2| lớn hơn hoặc = 0
=> (x^2-9)^2+|y-2| lớn hơn hoặc = 0
=> (x^2-9)^2+|y-2|+10 lớn hơn hoặc = 10
=> B lớn hớn hoặc = 10
Dấu = xảy ra <=> B=10
<=> (x^2-9)^2=0 |y-2|=0
<=> x^2-9=0 y-2=0
<=> x^2=9 y=2
<=> x=81 hoặc -81
Vậy GTNN B=10 đạt đc khi x=81 hoặc -81, y=2