x phần 3 = y phần 4 = y phần 5 = z phần 7 và 2x+3y-z = 186
Các Bạn Giúp Mình Với Ạ
Tìm x,y,z biết x phần 3 = y phần 4 ; 4 phần 5 = z phần 7 và 2x + 3y-z = 186 x phần 2 = y phần 3 = z phần 5 và x+y+z = -90 2x = 3y = 5z và x-y+z = -33 3x = 2y ; 7x = 5z ; x+y+z = 32Bạn chú ý gõ đề bài bằng công thức toán!
Các Bạn Giúp Mình Với
Tìm x, y, z biết :
a, x phần 3 = y phần 4 ; y phần 5 = z phần 7 và 2x + 3y - z = 186
b, x phần 2 = y phần 3 = z phần 5 và x + y + z = -90
c, 2x = 3y = 5z và x-y+z = -33
d, 3x = 2y ; 7x = 5z ; x+y+z = 32
a) \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=2\) ( vì 2x + 3y - z = 186 )
\(\Rightarrow\left\{{}\begin{matrix}2x=30.3=90\\3y=60.3=180\\z=28.3=84\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(45,60,84\right)\)
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=-90\)
Áp dụng dãy tỉ số bằng nhau ta được :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
( do \(x+y+z=-90\) )
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-9\right)=-18\\y=3.\left(-9\right)=-27\\z=5.\left(-9\right)=-45\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(-18,-27,-45\right)\)
c)Ta có : \(2x=3y=5z\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\) ( do \(x-y+z=-33\) )
\(\Rightarrow\left\{{}\begin{matrix}x=15.\left(-3\right)=-45\\y=10.\left(-3\right)=-30\\z=6.\left(-3\right)=-18\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(-45,-30,-18\right)\)
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
2x phần 3 = 3y phần 4 ; y phần 3 = z phần 5 và x+y+z = 49
x phần 3 = y phần 4 ; y phần 3 = z phần 5 và 2x-3y+z=6
x/3=y/4=>x/9=y/12
y/3=z/5=>y/12=z/20
=> x/9=y/12=z/20
ta đặt biaaue thức trên =k
=> x=9k;y=12k;z=20k
cho 2x-3y+z=42.Tìm x;y;z biết
x phần -3 = y phần 5 ; y phần 2 = z phần 7
tìm x,y,z biết:
2x phần 3 = 3y phần 4 = 4z phần 5 và x+y+z= 49
Ta có \(\frac{2x}{3}\)=\(\frac{3y}{4}\)\(\Rightarrow\)\(y=\frac{8x}{9}\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\\ \Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\\ \Leftrightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau , ta có
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\\ =\frac{x+y+z}{18+16+15}\\ =\frac{49}{49}\\ =1\)
Ta có \(\frac{x}{18}=1\Rightarrow x=18x1=18\)
\(\frac{y}{16}=1\Rightarrow y=16x1=16\)
\(\frac{z}{15}=1\Rightarrow z=15x1=15\)
Kết luận : x=18 , y=16 , z=15
x+3 phần 2=y-5 phần 4=z +2 phần 3 và 2x-3y =-48
tìm x, y, z
\(\frac{x+3}{2}=\frac{y-5}{4}=\frac{2x-3y}{4-12}=\frac{-48}{8}=-6\)
\(\Rightarrow\)\(x+3=-6\)
\(x=-6-3=-9\)
\(y-5=-6\)
\(y=-6+5=-1\)
Tìm các số x,y,z,biết rằng 2x phần 3 =3y phần 4 =4z phần 5 và x+y+z=49
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(x=\frac{3}{2}.12=18\)
\(y=\frac{4}{3}.12=16\)
\(z=\frac{5}{4}.12=15\)