Cho đa thức f(x)=x(x+1)(x+2)(ax+b).Xác định a,b để f(x) - f(x-1)=x(x+1)(2x+1)
Xác định a,b để đa thức f(x)=x^3+2x^2+ax+b chia hết cho đa thức g(x)=x^2+x+1
Cho đa thức f(x)=x(x+1)(x+2)(ax+b).Xác định a, để f(x)-f(x-1)=x(x+1)(2x+1)
xác định hằng số a, b để đa thức f(x) = 2x^3+ax+b chia cho x+1 dư -6 , khi chia f(x) cho x-2 dư 21
Cho đa thức f(x)=x(x+1)(x+2)(ax+b)
Xác định a và b để f(x)-f(x-1)=x(x+1)(2x+1) với mọi x.
Từ đó suy ra công thức tính tổng:
S=1.2.3+2.3.5+...+n(n+1)(2n+1) với n thuộc N*
5. Cho đa thức : f(x)=x(x+1)(x+2)(ax+b)
a) Xác định a,b để f(x)-f(x-1)=x(x+1)(2x+1) vs mọi x
b) Tính tổng S = 1.2.3+2.3.5+...+n(n+1)(2n+1) theo n (vs n là số nguyên dương )
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
cho đa thức
f(x)=x(x−1)(x+2)(ax+b)f(x)=x(x−1)(x+2)(ax+b)
a,xác định a,b để f(x)−f(x−1)=x(x+1)(2x+1)f(x)−f(x−1)=x(x+1)(2x+1)với mọi x
b, tính tổng S=1.2.3+2.3.5+.....+n(n+1)(2n+2)S=1.2.3+2.3.5+.....+n(n+1)(2n+2)theo n(với n nguyên dương)
1)Cho đa thức sau : f(x)=\(x^3+2x^2+ax+1\)
Tìm a, biết đa thức f(x) có một nghiệm \(x=-2\)
2) Cho đa thức sau : f(x)=\(x^2+ax+b\)
Xác định a,b biết đa thức f(x) có hai nghiệm \(x=1;x=2\)
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
Cho đa thức f(x) = ax3 - ( a+1 )x2 - ( 2b +1 )x + 3b
xác định a và b để f(x) chia hết cho đa thức x-1 và x+2.
Giao luu vấn đề mới
x=1, -2 là nghiệm
\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)