Cho A= 4x(x+y)(x+y+z)(x+z)+ y2z2 CM A là số chính phương khi x,y,z € N
Bài 3 : Cho x là số nguyên.Cmr :
B= x4 - 4x3 - 2x2 + 12x + 9 là bình phương số nguyên
Bài 4 : Cho x,y,z là số nguyên.Cmr :
C= 4x.(x + y).(x + y + z).(x + z) + y2z2 là một số chính phương
Giúp mình nha.Mai là hạn cuối rồi!
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)
\(=\left(x^2-2x-3\right)^2\)
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
Cho x, y, z là các số tự nhiên. Cm C=4x(x+y)(x+y+z)(x+z)+y2z2 là một số chính phương.
\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)
Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:
\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)
Vậy C là một số chính phương.
Cho A = 4x(x+y)(x+y+z)(x+z)+y2z2 với x;y;z là số tự nhiên.Chứng minh A là số chính phương
Cho A= 4x(x+y)(x+y+z)(x+z)+ y2z2 . chứng minh A là số chính phương vơi x,y,z là các số nguyên
Bài 3: Cho x là số nguyên. CMR:
B=x^4-4x^3-2x^2+12x+9 là số bình phương nguyên
Bài 4: Cho x,y,z là số nguyên.CMR:
C=4x.(x+y).(x+y+z).(x+z)+y^2.z^2 là số chính phương
B3 : t chỉ m r á :3
B4 :
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
= 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
= 4 ( x2 + xy + xz ) ( x2 + xy + xz + yz ) + y2x2
Đặt a = x2 + xy + xz và b= yz , ta có :
⇒ C = 4a( a + b ) + b2
= b2 + 4ab + 4a2
= ( b + a )2
⇒ C là số chính phương
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!
Cho x, y, z thuộc N.CMR 4x(x+y)(x+z)(x+y+z)+y2z2 là số chính phương
C= 4x(x+y)(x+y+z)(x+z)+y\(^2\) z\(^2\)
Cm C là 1 số chính phương
\(C=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=t\), ta có:
\(C=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t\right)^2+2.2t.yz+\left(yz\right)^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\)
=>đpcm
chưng tỏ với x,y,z thuộc N thì A= \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\) là 1 số chính phương
chứng tỏ với x;y;z thuộc N
4x(x+y)(x+y+z)(x+z)+y2z2 là 1 số chính phương
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=a\) , ta có:
\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)
\(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương với \(x;y;z\in N\)