Những câu hỏi liên quan
HN
Xem chi tiết
TC
Xem chi tiết
HC
Xem chi tiết
NT
Xem chi tiết
AK
24 tháng 9 2021 lúc 19:02

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

Bình luận (0)
 Khách vãng lai đã xóa
NT
24 tháng 9 2021 lúc 19:03

cau a thi sao ha ban ? 

Bình luận (0)
 Khách vãng lai đã xóa
NT
24 tháng 9 2021 lúc 19:05

ok thanks ban nhe

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
Xem chi tiết
TH
13 tháng 2 2018 lúc 12:16

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

Bình luận (0)
TH
13 tháng 2 2018 lúc 12:18

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

Bình luận (0)
PQ
13 tháng 2 2018 lúc 12:21

Ta có :

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(\Leftrightarrow\)\(2A=1-\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(2A=\frac{3^{2008}-1}{3^{2008}}\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{3^{2008}}:2\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Vậy \(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Bình luận (0)
H24
Xem chi tiết
AH
29 tháng 1 2024 lúc 16:52

Bài 1:

$A=1.2+2.3+3.4+...+201.202$

$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+201.202(203-200)$

$=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+201.202.203-200.201.202$

$=(1.2.3+2.3.4+3.4.5+...+201.202.203)-(1.2.3+2.3.4+....+200.201.202)$

$=201.202.203$

$\Rightarrow A=\frac{201.202.203}{3}=2747402$

Bình luận (0)
AH
29 tháng 1 2024 lúc 16:55

Bài 2:

$S=4.5+5.6+6.7+....+100.101$

$3S=4.5(6-3)+5.6.(7-4)+6.7.(8-5)+....+100.101(102-99)$

$=4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+....+100.101.102-99.100.101$

$=(4.5.6+5.6.7+6.7.8+...+100.101.102)-(3.4.5+4.5.6+5.6.7+...+99.100.101)$

$=100.101.102-3.4.5$

$\Rightarrow S=\frac{100.101.102-3.4.5}{3}=343380$

Bình luận (0)
AH
29 tháng 1 2024 lúc 17:36

Bài 3:

$S=1.2.3+2.3.4+3.4.5+...+98.99.100$

$4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+...+98.99.100(101-97)$

$=(1.2.3.4+2.3.4.5+3.4.5.6+...+98.99.100.101)-(0.1.2.3+1.2.3.4+2.3.4.5+...+97.98.99.100)$

$=98.99.100.101$

$\Rightarrow S=\frac{98.99.100.101}{4}$

Bình luận (0)
OR
Xem chi tiết
PA
21 tháng 7 2017 lúc 20:37

c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4

==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)

==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11

==> 4C= 8.9.10.11=7920

==> C= 7920 :4=1980

a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3

               3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)

               3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)

               3A= 99.100.101 - 0.1.2

               3A= 999900 - 0

               3A= 999900

    ==> A= 999900 : 3

   ==> A= 333300

Bình luận (0)
NG
Xem chi tiết
AN
1 tháng 9 2017 lúc 19:00

A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)

A=\(\dfrac{1}{1}-\dfrac{1}{39}\)

A=\(\dfrac{38}{39}\)

còn lại tự làm do mình có việc chút

Bình luận (0)
TH
31 tháng 8 2017 lúc 21:13

Chưa học

Bình luận (1)