Những câu hỏi liên quan
DX
Xem chi tiết
NT
2 tháng 7 2021 lúc 9:19

Ta có: \(2^m-2^n=256\)

\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)(1)

Ta có: \(2^m-2^n=256\)

\(\Leftrightarrow2^m>2^n\)

\(\Leftrightarrow m>n\)

(1) suy ra \(2^{m-n}-1\) là số lẻ

\(\Leftrightarrow2^{m-n}-1=1\)

\(\Leftrightarrow m-n=1\)

\(\Leftrightarrow2^n=256\)

hay n=8

hay m=1+n=1+8=9

Vậy: (m,n)=(9;8)

Bình luận (0)
QH
4 tháng 8 2021 lúc 20:29

Bạn Nguyễn Lê Phước Thịnh ơi? Nhưng mik vẫn ko hiểu tại sao \(2^{m-n}-1\)là số lẻ và m>n lại suy ra được \(2^{m-n}-1=1\)?

Bình luận (2)
 Khách vãng lai đã xóa
BF
26 tháng 10 2023 lúc 13:12

tại sao từ 2^m - 2^n lại tách ra thành 2^n.(2^m-n-1) được vậy

Bình luận (0)
SM
Xem chi tiết
DV
4 tháng 10 2015 lúc 8:19

^m-2^n=2^8 
Chia cả 2 vế cho 2 mũ 8. 
2^(m-8)- 2^(n-8)=1 
+giả sử m<=8, ta có VT<=1-2^(n-8)<1 
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2 
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1 
do đó n>=8 
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<=>1 
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9. 
Vậy m=9, n=8

Bình luận (0)
KP
Xem chi tiết
XO
10 tháng 9 2020 lúc 15:16

Ta có : 2m - 2n = 256 

Đặt m = n + k (Vì 2m > 2n) (k > 0 ; k \(\inℕ\))

Khi đó 2n.2k - 2n = 256

=> 2n(2k - 1) = 256

Vì k> 0 => 2k > 0 => 2k - 1 > 0 <=> k > 1

Mà 2k chẵn với k > 0

=> 2k - 1 lẻ với k > 1 (1)

Vì 2n(2- 1) chẵn => 2k - 1 chẵn hoặc 2k - 1 = 1

mà xét vớ (1) ta chỉ nhận được 2k - 1 = 1

=> k = 1

=> n = 9

=> m = 10

Vậy n = 9 ; m = 10

Bình luận (0)
 Khách vãng lai đã xóa
KN
10 tháng 9 2020 lúc 15:18

\(2^m-2^n=256=2^8\)---> Chia 2 vế cho 2n

\(\Leftrightarrow2^{m-n}-1=2^{8-n}\)

\(\Leftrightarrow2^{m-n}-2^{8-n}=1\)

\(\Leftrightarrow2^{8-n}\left(2^{m-8}-1\right)=1\)---> Vì các lũy thừa với số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:

\(\hept{\begin{cases}2^{8-n}=1\\2^{m-8}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{8-n}=2^0\\2^{m-8}=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}8-n=0\\m-8=1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=8\\m=9\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
10 tháng 9 2020 lúc 15:34

\(2^m-2^n=256\)  (1)

Từ phương trình, dễ thấy \(m>n\Rightarrow m-n>0\Rightarrow m-n\ge1\)(vì m; n nguyên nên m-n nguyên)

\(\left(1\right)\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)

Bây giờ, nếu \(m-n>1\)thì \(2^{m-n}-1\)là số lẻ nên vế trái chỉ chia hết cho 2 còn vế phải chia hết cho 4. Do đó ta loại trường hợp này

Từ đó, \(m-n=1\Rightarrow2^n=256\Rightarrow n=8\Rightarrow m=9\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
EC
15 tháng 8 2017 lúc 8:43

2^m-2^n=2^8
Chia cả 2 vế cho 2 mũ 8.
2^(m-8)- 2^(n-8)=1
+giả sử m<=8, ta có VT<=1-2^(n-8)<1
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1
do đó n>=8
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<>1
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9.
Vậy m=9, n=8

Bình luận (0)
KM
15 tháng 8 2017 lúc 8:47

Ta có \(2^m-2^n=256\)

\(\Rightarrow2^m-2^n=2^8\)

\(\Rightarrow m-n=8\)

Thay \(m=n+8\)

Khi đó ta có \(2^{n+8}-2^n=256\)

\(\Rightarrow2^n.2^8-2^n=2^8\)

\(\Rightarrow2^n.\left(2^8-1\right)=2^8\)

\(\Rightarrow2^n.255=256\)

\(\Rightarrow2^n=\frac{256}{255}\)

Đề bài sai rùi -_- nếu đúng thì phải thêm dữ kiện chứ

Bình luận (0)
NN
15 tháng 8 2017 lúc 8:48

m = 9 

n = 8

Bình luận (0)
VA
Xem chi tiết
HT
28 tháng 5 2017 lúc 9:07

\(\Leftrightarrow\left(2^{m-2}\right)^n=2^8\Leftrightarrow2^{\left(m-2\right)n}=2^8\Leftrightarrow n\left(m-2\right)=8\)

vì m,n nguyên dương nên \(m-2\ge0\Rightarrow m\ge2\)do đó m-2 và n là ước của 8 nên có thể là (8,1);(4,2);(2,4)

\(\hept{\begin{cases}m-2=8\\n=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=10\\n=1\end{cases}}\)\(\hept{\begin{cases}m-2=4\\n=2\end{cases}}\Leftrightarrow\hept{\begin{cases}m=6\\n=2\end{cases}}\)\(\hept{\begin{cases}m-2=2\\n=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\n=4\end{cases}}\)việc còn lại là kết luận nghiệm
Bình luận (0)
TM
28 tháng 5 2017 lúc 16:59

à mình nghĩ cái đề nó như vậy chứ 2m-2n=256

=>2n(2m-n-1)=256

2m-2n=256>0=>2m>2n=>m>n=>m-n>0= mà m;n nguyên dương nên m-n\(\ge\)1

=>2m-n-1 là số lẻ

Mặt khác 2n(2m-n-1)=28.1 => 2n=28 và 2m-n-1=1 => n=8 và m=9

Bình luận (0)
HQ
Xem chi tiết
TD
11 tháng 8 2015 lúc 16:24

 Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9

Bình luận (0)
DT
12 tháng 8 2015 lúc 17:22

2m-2n > 0 => 2m>2n => m>n

2m-2n=256

2n(2m-n-1) = 28

* Nếu m-n =1 thì

2n(2m-n-1)=28

2n(2-1)     =28

2n = 28

=> n=8

m-n = 1

m-8 = 1

m = 8+1

m=9

* Nếu m-n lớn hơn hoặc bằng 2 thì :

2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn

Vậy m=9 ; n=8

 

 

Bình luận (0)
NT
13 tháng 1 2018 lúc 20:21

\(2^9-2^8=256\)\(\Rightarrow m=9;n=8\)

Bình luận (0)
BT
Xem chi tiết
DV
20 tháng 9 2015 lúc 20:29

m = 9 ; n = 8         

Bình luận (0)
HM
Xem chi tiết
TD
8 tháng 10 2015 lúc 6:05

2m-2n=29-28

=>m=9; n=8

Vậy m=9; n=8

Bình luận (0)
BT
Xem chi tiết
HP
7 tháng 11 2015 lúc 21:16

\(2^m-2^n=256=2^8=>2^n\left(2^{m-n}-1\right)=2^8\left(1\right)\)

vì m khác n ,nên ta có:

+)nếu m-n=1 thì từ (1) ta có 2^n(2-1)=2^8

=>n=8;m=9

+)nếu m-n>2 thì 2^m-n -1 là 1 số lẻ lớn hơn 1 ,do đó vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố,còn vế phải của (1) chỉ chứa thừa số nguyên tố 2.Mâu thuẫn

Vậy n=8;m=9 là đáp số duy nhất

Bình luận (0)