tìm GTLN của A= căn (x-5) + căn (23-x)
tìm gtln của P=x+căn x+2
Tìm các giá trị của x để mỗi biểu thức sau được xác định
a) căn của x+4
b) căn của x/7
c) căn của -7x
d) căn của -3/x-2
e) căn của 4x-12
f) căn của 3x^2+1
g) căn của x+3/5-x
c3: cho x+y=15, tìm giá tị nhỏ nhất , lớn nhất của biểu thức:
B=căn (x-4) + căn (y-3)
c4: tìm GTNN của biểu thức A= (2x^2 - 6x + 5) / 2x
c5: cho a, b, x là những số dương. tìm GTNN của :
P= [(x+a)(x+b)]/x
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
Bài 1 :
a) Tìm giá trị nhỏ nhất của A = l x - 2 l + 5
b) Tìm giá trị nhỏ nhất của B = 12 - l x + 4 l
c) Tìm giá trị nhỏ nhất của C = (căn bậc hai x) + 1
Tìm GTNN của:
a) x-căn x
b) 5-\(\sqrt{X^2-6X+14}\)
a)\(x-\sqrt{x}=x-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi x=1/4
b) câu này là max chứ, hay vẫn min?
Tìm GTLN: N=x+ căn 2-x
\(P=x+\sqrt{2}=-\left(2-x\right)+\sqrt{2-x}+2\)
Đặt \(t=2-x\)ta có:
\(P=-t^2+t+2\)
GTLN của \(P=2,25\Leftrightarrow t=\frac{1}{2}\)
\(\Leftrightarrow x=1,75\)
bài nay chị Giang đưa về phương trình bậc 2 và tìm nhé
Mọi người ơi cho em hỏi : Tìm min,max của bt: căn bậc 2 của x-2 cộng với căn bậc hai của 4-x
tìm Max thì bn bình phương lên r bunyakovsky
Min thì Áp dụng \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)
Tìm giá trị nhỏ nhất của biểu thức
C=-/2-3x/+phân số 1/2
D=-3-/2x+4/
A=7-3x căn bậc hai của x-3
Tìm giá trị lớn nhất
A=3x/1-2x/-5
B=(2x^2+1)^4-3
C=/x-phân số 1/2/+(y+2)^2+11
D=căn bậc hai của 2x-3 rồi cộng 5
tìm giá trị của x để bt đc xác định
căn x^2 + 3
căn -x^2 -2
rút gọn
căn x^2 - 6x +9