Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HN
24 tháng 7 2016 lúc 22:35

C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)

Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)

\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)

Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)

Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...

Bình luận (0)
HN
25 tháng 7 2016 lúc 9:00

C4 : Bạn cần thêm điều kiện x là số dương nhé : )

Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy : 

\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)

Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)

C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :) 

\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)

Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)

Vậy .......

Bình luận (0)
PK
Xem chi tiết
LG
Xem chi tiết
TM
8 tháng 7 2017 lúc 23:23

a)\(x-\sqrt{x}=x-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi x=1/4

b) câu này là max chứ, hay vẫn min?

Bình luận (0)
VG
Xem chi tiết
H24
1 tháng 3 2018 lúc 21:32

\(P=x+\sqrt{2}=-\left(2-x\right)+\sqrt{2-x}+2\)

Đặt \(t=2-x\)ta có:

\(P=-t^2+t+2\)

GTLN của \(P=2,25\Leftrightarrow t=\frac{1}{2}\)

\(\Leftrightarrow x=1,75\)

bài nay chị Giang đưa về phương trình bậc 2 và tìm nhé

Bình luận (0)
LN
21 tháng 1 2018 lúc 8:36

hieu yeu huyen

Bình luận (0)
VG
21 tháng 1 2018 lúc 8:50

đừng trả lời linh tinh

Bình luận (0)
NJ
Xem chi tiết
NJ
20 tháng 4 2017 lúc 19:31

mn cố gắng giúp em với

Bình luận (0)
H24
20 tháng 4 2017 lúc 20:27

tìm Max thì bn bình phương lên r bunyakovsky

Min thì Áp dụng \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)

Bình luận (2)
PS
Xem chi tiết
TN
Xem chi tiết