Những câu hỏi liên quan
H24
Xem chi tiết
HL
Xem chi tiết

Giải:

Ta có: A=1011-1/1012-1

       10A=10.(1011-1)/1012-1

       10A=1012-10/1012-1

       10A=1012-1-9/1012-1

       10A=1012-1/1012-1 - 9/1012-1

       10A=1-9/1012-1

Tương tự: B=1010+1/1011+1

              10B=1+9/1011+1

Vì -9/1012-1 < 9/1011+1 nên 10A < 10B

Vậy A<B

Chúc bạn học tốt!

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 12 2017 lúc 4:38

Sử dụng tính chất nếu a b  < 1 thì a b < a + m b + m với mọi a, b, m  ∈ Z

 A =  10 10 + 1 10 11 + 1 < 10 10 + 10 10 11 + 10 = 10 9 + 1 10 10 + 1 = B

Vậy A < B

Cách khác:  10A=  10 11 + 10 10 11 + 1 = 1 + 9 10 11 + 1

  10 B = 10 10 + 10 10 10 + 1 = 1 + 9 10 11 + 1   9 10 11 + 1 < 9 10 10 + 1 => A < B

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 8 2017 lúc 18:12

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 10 2017 lúc 14:04

Bình luận (0)
RP
Xem chi tiết

Giải:

A=10^11-1/10^12-1

10A=10.(10^11-1)/10^12-1

10A=10^12-10/10^12-1

10A=10^12-1-9/10^12-1

10A=10^12-1/10^12-1 + -9/10^12-1

10A=1+ -9/10^12-1

 

B=10^10+1/10^11+1

10B=10.(10^10+1)/10^11+1

10B=10^11+10/10^11+1

10B=10^11+1+9/10^11+1

10B=10^11+1/10^11+1 + 9/10^11+1

10B=1 + 9/10^11+1

Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B

=>A < B

Chúc bạn học tốt!

Bình luận (0)
LD
Xem chi tiết
CT
Xem chi tiết
NM
26 tháng 10 2021 lúc 9:00

\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)

Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)

\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)

\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)

Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm

Bình luận (0)
TD
Xem chi tiết
NQ
Xem chi tiết