Những câu hỏi liên quan
BA
Xem chi tiết
KV
Xem chi tiết
H24
1 tháng 5 2018 lúc 11:54

A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.....\dfrac{79}{80}\)

=> A1 < \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{5}{6}.....\dfrac{80}{81}\)

=> A2 < A.A1 = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{79}{80}.\dfrac{80}{81}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)

=> A < \(\dfrac{1}{9}.\)

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TM
Xem chi tiết
MT
13 tháng 8 2015 lúc 17:22

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}

Bình luận (0)
LN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
AH
12 tháng 6 2021 lúc 1:06

Lời giải:

Gọi tổng trên là $A$. Ta có:

\(2A>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

\(2A>\frac{\sqrt{2}-1}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})}+...+\frac{\sqrt{81}-\sqrt{80}}{(\sqrt{80}+\sqrt{81})(\sqrt{81}-\sqrt{80})}\)

\(2A>(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+....+(\sqrt{81}-\sqrt{80})\)

\(2A>\sqrt{81}-1=8\Rightarrow A>4\)

Ta có đpcm.

Bình luận (0)