cho a =1/2*3/4*5/6*...*79/80. chứng minh a <1/9
Cho A=1/2×3/4×5/6.....×79/80. Chứng minh A>1/13
Cho \(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...\dfrac{79}{80}\) . Chứng minh \(A< \dfrac{1}{9}\)
A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.....\dfrac{79}{80}\)
=> A1 < \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{5}{6}.....\dfrac{80}{81}\)
=> A2 < A.A1 = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{79}{80}.\dfrac{80}{81}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
=> A < \(\dfrac{1}{9}.\)
choA=1/2*3/4*5/6*........*79/80
chứng minh rằng A<1/9
Cho A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...\dfrac{79}{80}\). Chứng minh A < \(\dfrac{1}{9}\) .
Cho A = 1/2 . 3/4 . 5/6 . 7/8 ... 79/80
Chung minh A < 1/9
Cho \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}
Cho: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
Cho: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
chứng minh \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)
Lời giải:
Gọi tổng trên là $A$. Ta có:
\(2A>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(2A>\frac{\sqrt{2}-1}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})}+...+\frac{\sqrt{81}-\sqrt{80}}{(\sqrt{80}+\sqrt{81})(\sqrt{81}-\sqrt{80})}\)
\(2A>(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+....+(\sqrt{81}-\sqrt{80})\)
\(2A>\sqrt{81}-1=8\Rightarrow A>4\)
Ta có đpcm.