Tìm giá trị của x biết:x+2x+3x+..+100x=5500
Tìm giá trị x, y, z:
a. (5x-2)(-1/3-2x)=0
b. x/2=y/3 với xy=54
c. x+2x+3x+4x+...+100x=-213
a: =>5x-2=0 hoặc 2x+1/3=0
=>x=-1/6 hoặc x=2/5
b: Đặt x/2=y/3=k
=>x=2k; y=3k
xy=54
=>6k^2=54
=>k^2=9
=>k=3 hoặc k=-3
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
c: =>5050x=-213
=>x=-213/5050
tập hợp các giá trị của x thỏa mãn: |x|+|2x|+|3x|+....+|100x|=5050 là ................
tính giá trị của đa thức sau : B(x)=x+2x^2 +3x^3+....+99x^99+100x^100 .Tại x=+-1
Khi x=1 thì
B(1)=1+2+...+100=5050
Khi x=-1 thì
B(-1)=-1+2-3+4-5+6-...-99+100
=1+1+...+1
=50
Bài 1: CM đẳng thức sau:
(x^2-xy+y^2)(x+y)=x^3+y^3.
Bài 2: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến :
(x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+1)-4x(x-1).
Bài 3: Tìm x biết :
(3x-1)(2x+7)-(x+1)(6x-5)=16.
Bài 4: CM rằng với mọi n thuộc Z thì:
n(n+5)-(n-3)(n+2) chia hết cho 6.
Bài 5: CM rằng với mọi số nguyên a giá trị của biểu thức:
a(a-1)-(a+3)(a+2) chia hết cho 6.
Bài 6: Tính giá trị của biểu thức sau bằng cách hợp lí:
A=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99.
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
TL:
bài 4:
<=>n^2+5n-n^2-2n+3n+6
<=>6n+6
<=>6(n+1)
mà 6(n+1)\(⋮\) 6
=>n(n+5)-(n-3)(n+2)\(⋮\) 6(đpcm)
Tập hợp các giá trị của x thỏa mãn
|x|+|2x|+|3x|+...+|100x|=5050
giúp mik luôn nha
1 và -1
đẻ gttd của x ra ngoài r tính tổng của phần trong.sao đó giải bt
=(1+2+3+...+100)./x/=5050
=(101*100/2)./x/=5050
=5050./x/=5050
Suy ra /x/=1. Vậy x=1 ; -1
Luu ý : /x/ là giá trị tuyệ đối nh
tìm giá trị nhỏ nhất của
A=x^2-100x
B=3x^2-4x+5
\(A=x^2-100x=x^2-2\cdot50\cdot x+2500-2500\)
\(=\left(x-50\right)^2-2500\) Vậy GTNN là -2500
\(B=x^2-2\cdot x\cdot2+4+1=\left(x-2\right)^2+1\)Vậy GTNN là 1
Tìm giá trị nhỏ nhất của biểu thức
C = 2x^2 -4x + 2012
D = x^2 + 100x - 1000
Tìm giá trị nhỏ nhất lớn nhất nếu có của
\(A=x^2+100x+100\)
\(B=2x^2+56x\)
\(C=-3x^2-3x+1\)
\(D=-8x^2+3x+11\)
Ta có : x2 + 100x + 100
= x2 + 2.50.x + 2500 - 2400
= (x + 50)2 - 2400
Vì \(\left(x+50\right)^2\ge0\forall x\)
Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)
Vậy Amin = -2400 khi x = -50
Tìm tập hợp các giá trị của x thỏa mãn |x| + |2x| + |3x| +....+|100x|=5050
Gia Linh nhá, lên mạng hỏi câu hỏi để người ta trả lời. THông minh đấy. Tẹo nữa t nói cho bọn lớp mình ha ha ha