Những câu hỏi liên quan
H24
Xem chi tiết
VP
6 tháng 2 2017 lúc 20:23

mk nè,k đi

Bình luận (0)
H24
20 tháng 12 2016 lúc 8:03

Ai giải hộ mik bài này đi mình K cho

Bình luận (0)
DL
15 tháng 12 2017 lúc 8:58
em biết
Bình luận (0)
H24
Xem chi tiết
AS
Xem chi tiết
H24
22 tháng 12 2016 lúc 20:37

Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1

Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn

suy ra 2015^2016-1 chia hết cho 2

2015^2016 +1 chia hết cho 2

Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2

Hay A chia hết cho 4

2 Xét 2 STN liên tiếp

(2015^2016-1),2015^2016,(2015^2106+1)

Trong ba số tự nhiên sẽ có một số chia hết cho 3

Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3

Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3

mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3

MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen

Bình luận (0)
HH
14 tháng 11 2017 lúc 9:55

4 đâu phải số nguyên tố số 12 cũng vậy

Bình luận (0)
HH
14 tháng 11 2017 lúc 9:59

câu a thì dễ mà câu b ko cít lí luan sao

Bình luận (0)
KN
Xem chi tiết
KN
5 tháng 12 2019 lúc 13:26

gips mk với ai làm nhanh nhất mk sẽ k

Bình luận (0)
 Khách vãng lai đã xóa
KS
Xem chi tiết
HT
2 tháng 12 2018 lúc 17:02

ta có: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 4 nên A chia hết cho 4

mặt khác: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 12 nên A chia hết cho 12

Bình luận (0)
HT
3 tháng 12 2018 lúc 21:48

đúng rồi

Bình luận (0)
DL
Xem chi tiết
ND
26 tháng 12 2017 lúc 10:00

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

Bình luận (0)
HM
Xem chi tiết
DM
Xem chi tiết
ES
Xem chi tiết
LP
19 tháng 8 2023 lúc 17:04

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

Bình luận (0)