Cho hàm số f(x) thỏa mãn 2.f(1/x)+f(x)= x^2. Tính f(3)
Cho F(x) là một nguyên hàm của hàm số f(x)=|1+x|-|1-x| trên tập R và thỏa mãn F(1)= 3.Tính tổng F(0)+F(2)+F(-3).
Cho F(x) là một nguyên hàm của hàm số f(x) = |1+x| - |1-x| trên tập R và thỏa mãn F(1) = 3 Tính tổng T = F(0) + F(2) + F(-3)
A. 8.
B. 12.
C. 18.
D. 10.
cho hàm số f(x) thỏa mãn: (x+2)f(-x)=(1-x)f(x). Tính f(-1/2)
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số F ( x ) = a x 3 + b x 2 + c x + 1 là một nguyên hàm của hàm số f(x) thỏa mãn f(1) = 2, f(2) = 3, f(3) = 4. Hàm số F(x) là
Chọn D.
Ta có
Vậy F(x)= 1 2 x 2 + x + 1
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ] d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập và thỏa mãn F 1 = 3 ; F - 1 = 2 ; F - 2 = 4 ; Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 14
D. 10
Cho hàm số f(x) thỏa mãn f ' ( x ) = ( x + 1 ) e x và f(0)=1. Tính f(2)
A. f ( 2 ) = 4 e 2 + 1
B. f ( 2 ) = 2 e 2 + 1
C. f ( 2 ) = 3 e 2 + 1
D. f ( 2 ) = e 2 + 1
Cho hàm số y = f ( x ) thỏa mãn f ( 2 ) = 1 4 và f ' ( x ) = 2 x . [ f ( x ) ] 2 với ∀ x ∈ R tính f ( 1 )