Tìm tất cả số tự nhiên X sao cho (1+0,75) < X < (4 + 0,5)
Tìm tất cả số tự nhiên X sao cho (1+0,75) < X < (4 + 0,5)
X = 2; X=3 ; X=4
1. Tìm tất cả các số tự nhiên x sao cho \(x⋮15\) và 45 < x <136.
2.Tìm tất cả các số tự nhiên x sao cho \(18⋮x\) và x>7.
1. \(x⋮15\Rightarrow x\in B\left(15\right)=\left\{0;15;30;45;60;75;90;105;120;135;150;...\right\}\)
mà \(45< x< 136\)
\(\Rightarrow x\in\left\{60;75;90;105;120;135\right\}\)
2.
\(18⋮x\Rightarrow x\in U\left(18\right)=\left\{1;2;3;6;18\right\}\)
mà \(x>7\Rightarrow\Rightarrow x\in\left\{18\right\}\)
Bài 2:
\(18⋮x\\ \Rightarrow x\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\\ Mà,x>7\Rightarrow x\in A=\left\{9;18\right\}\)
tìm các số tự nhiên x,y sao cho(2x+1)x(x-5)=12
tìm tất cả các số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
tìm tất cả các số B sao cho:b=62xy427 biết B chia hết cho 99
3 câu 3 like
(2x+1)(x-5)=12
2x2-9x-17=0
delta=217
x1= \(\frac{-\left(-9\right)-\sqrt{217}}{2\cdot2}=\frac{9-\sqrt{217}}{4}\) x2=\(\frac{-\left(-9\right)+\sqrt{217}}{2\cdot2}=\frac{9+\sqrt{217}}{4}\)
P/s: ko có y hả b?
tìm các số tự nhiên x,y sao cho(2x+1)x(x-5)=12
tìm tất cả các số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
tìm tất cả các số B sao cho:b=62xy427 biết B chia hết cho 99
3 câu 3 like
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
Tìm tất cả số tự nhiên x sao cho
6 chia hết cho(x-1)
Giúp
Vì 6 ⋮(x -1) nên (x-1) ∈ Ư(6)
Ta có Ư(6) ={1;2;3;6}
Suy ra: x -1 = 1 ⇒ x = 2
x – 1 = 2 ⇒ x = 3x – 1 = 3 ⇒ x = 4
x – 1 = 6 ⇒ x = 7
Vậy x ∈ { 2; 3; 4; 7}
Tìm tất cả các số tự nhiên n sao cho 5n +19 chia hết cho n + 3.Làm nhanh giúp mk nha mn
Tìm số tự nhiên x biết :1+2+3+4+...+x=3750!!!!
Để \(5n+19⋮n+3\)
\(\Rightarrow5n+15+4⋮n+3\)
\(\Rightarrow5\left(n+3\right)+4⋮n+3\)
Vì \(5\left(n+3\right)⋮n+3\Rightarrow4⋮n+3\Rightarrow n+3\inƯ\left(4\right)\Rightarrow n+3\in\left\{1;2;4\right\}\Rightarrow n\in\left\{-2;-1;1\right\}\)
Mà n là só tự nhiên => n = 1
Vậy n = 1
Ta có : 1 + 2 + 3 + 4 + ... + x = 3750
<=> x(x + 1)/2 = 3750
=> x(x + 1) = 7500
Vì 7500 không là tích của 2 số tự nhiên liên tiếp :
=> \(n\in\varnothing\)
B3 tìm tất cả số tự nhiên x sao cho
a)2.16≥2x>4 b) 9.27≤3x≤343
a: \(\Leftrightarrow2< x< =5\)
hay \(x\in\left\{3;4;5\right\}\)
tìm tất cả các cặp số tự nhiên x, y sao cho 4.x+5.y=35
tìm tất cả các số tự nhiên x,y sao cho y +1 chia hết cho x, x+1 chia hết cho y
Bạn có thể tham khảo cách của mình:
Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y
-TH x=y:
x+1 chia hết cho y
<=> y+1 chia hết cho y
=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)
Ta có cặp so (x;y)=(1;1)
-TH x>y:
Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k
Thay vào ta có: y+1 chia hết cho x
<=> x-k+1 chia hết cho x
Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x
<=> 1-k =0 hoặc >0
+Nếu 1-k=0 thì k=1
Thay vào ta có: x+1 chia hết cho y
<=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2
=> y={1;2}. Vậy x={2;3} tương ứng.
Ta có cặp số x;y=(1;2);(2;3)
+Nếu 1-k>0:
Do k thuộc N* nên 1-k>0 là vô lý
Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)
Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).
giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Theo đề bài,
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2