Rút gọn phân số \(\dfrac{2009}{2008}\)
rút gon phân số 2008/(1*2009)+(2+2008)+.......+(2009*1)
so sánh phân số
\(\dfrac{2009}{2010}\) và\(\dfrac{2008}{2009}\)
Giải chi tiết cho mik
Giải chi tiết:
đầu tiên ta nhân chéo:
2009x2009=4.036.081 ta được phân số: \(\dfrac{4.036.081}{4.038.090}\)
2010x2009=4.038.090
rồi ta lại nhân chéo với phân số thứ :
2008x2010=4.036.080 ta được phân số:\(\dfrac{4.036.080}{4.038.090}\)
2009x2010=4.038.090
khi được phân số có mẫu số bằng nhau ta so sánh như bình thường với tử số:
\(\dfrac{\text{4.036.081}}{4.038.090}\) > \(\dfrac{\text{4.036.080 }}{4.038.090}\)
rút gọn biểu thức: ((2008^2 - 2014)(2008^2+4016-3)2009)/(2005.2007.2010.2011)
giúp mik nha
Đặt biểu thức là A:
\(A=-6.2009^2-2^2.2009=-6.2007.2009.2011\)
\(A=\frac{-6.2009}{2005.2010}\)
\(A=\frac{-2009}{2005.335}\)
P/s: Ko chắc
Cmr : A = \(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}+\dfrac{2008}{2009}}\) là số tự nhiên
Rút gọn BT:
\(\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
Chứng minh rằng
A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là số tự nhiên
`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`
`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`
`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`
`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`
`=\sqrt{(2009-2008/2009)^2}+2008/2009`
`=|2009-2008/2009|+2008/2009`
`=2009-2008/2009+2008/2009`
`=2009` là 1 số tự nhiên
rút gọn
\(B=\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
* Chưng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Đặt \(2008=a\)
\(\Leftrightarrow A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-\dfrac{2a\left(a+1\right)}{a+1}+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2009\left(đpcm\right)\)
Rút gọn B=(1+2+2^2+2^3+...+2^2008)/(1-2^2009)
đặt tử là A,ta có:
2A=2(1+2+22+23+...+22008)
2A=2*1+2*2+2*22+...+2*22008
2A=2+22+23+...+22009
2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)
A=22009-1
thay A vào tử số ta được \(B=\frac{2^{2009}-1}{1-2^{2009}}=-1\)