\(\frac{5}{16}\)+ y = \(\frac{1}{2}\)
cho x,y khác 0, CMR :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)\ge\frac{-5}{2}\)
gọi A là VT
Ta có : \(A=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
Áp dụng BĐT Cô-si,ta có :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\Rightarrow\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\ge0\)
\(\frac{x^{16}+y^{16}}{4}\ge\frac{x^8y^8}{2}=\left(\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)-\frac{3}{2}\ge4\sqrt[4]{\frac{x^8y^8}{16}}-\frac{3}{2}==2x^2y^2-\frac{3}{2}\)
\(\Rightarrow\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\ge\frac{-3}{2}\)
Từ đó ta có : \(A\ge0-\frac{3}{2}-1=\frac{-5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x^2y^2=1\end{cases}\Leftrightarrow x=y=\pm1}\)
Với mọi x; y khác 0. CMR
\(P=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)\ge-\frac{5}{2}\)
Đẹp Trai Không Bao Giờ Sai sau tag mik nx nha
tth Trần Thanh Phương giúp mk vs
Câu 21:
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge x^4y^4+\frac{x^8y^8}{2}-1-2x^2y^2-x^4y^4=\left(x^2y^2-1\right)^2+\frac{1}{2}\left(x^4y^4-1\right)^2-\frac{5}{2}\ge-\frac{5}{2}.\)
Dấu = xảy ra khi x=y=1
1a)tìm x,y biết: \(4+\frac{x}{7+y}=\frac{4}{7}and:x+y=22\)
b)cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\). Tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
c) tìm x biết \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=2^x\)
d)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
2. Tính:P=\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+..+16\right)\)
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
2.
Ta có 1+2+...+n=n.(n+1):2
=>P=\(1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\)\(\frac{1}{16}.\frac{16.17}{2}\)=1+\(\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)=1+\(\frac{1}{2}.\left(3=4+..=17\right)\)
=1+\(\frac{1}{2}.153=1+\frac{153}{2}=\frac{155}{2}\)
a) Giải pt: \(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y}-1}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)
pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)
Áp dụng BĐT Cauchy:
\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)
\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)
\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)
\(=4+2+10=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)
2x = 5y và x - 2y = -12
2x = 3y = 4z và x + y + z =21
\(\frac{x}{3}=\frac{y}{5}vàx+y=32\)
7x = 3y và x - y =16
\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}zvàx^2+y^2+z^2=724\)
\(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}vàx+y+z=102\)
\(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}vàx-2y+3z=46\)
\(\frac{x}{3}=\frac{y}{16}vàx.y=192\)
a/ 2x = 5y và x - 2y = -12
Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)
\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)
\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)
Vậy:.................
b/ 2x = 3y = 4z và x + y + z =21
Ta có: 2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)
Vậy:...............
c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\)
\(\frac{y}{5}=4\Rightarrow y=4.5=20\)
Vậy:................
d/ Ta có: 7x = 3y
=> \(\frac{7x}{21}=\frac{3y}{21}\)
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)
\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)
Vậy:................
1,\(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{5}=\frac{2y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{2y}{4}=\frac{x-2y}{5-4}=\frac{-12}{1}=-12\)
Do đó:
\(\frac{x}{5}=-12\Rightarrow x=-60\)
\(\frac{2y}{4}=-12\Leftrightarrow\frac{y}{2}=-12\Rightarrow x=-24\)
Vây x = -60,y = -24
2, 2x = 3y = 4z \(\Rightarrow BCNN\left(2;3;4\right)=12\)
nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
Do đó
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{6.21}{13}=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{4.21}{13}=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{3.21}{13}=\frac{63}{13}\)
f/ \(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}\)
=> \(\frac{x}{6}=\frac{y}{10};\frac{y}{10}=\frac{z}{35}\)
=> \(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}=\frac{x+y+z}{6+10+35}=\frac{102}{51}=2\)
\(\frac{x}{6}=2\Rightarrow x=2.6=12\)
\(\frac{y}{10}=2\Rightarrow y=2.10=20\)
\(\frac{z}{35}=2\Rightarrow z=2.35=70\)
Vậy:.................
h/ Đăt: \(\frac{x}{3}=\frac{y}{16}=k\)
\(\frac{x}{3}=k\Rightarrow x=3k\)
\(\frac{y}{16}=k\Rightarrow y=16k\)
Ta có: x. y = 192
=> 3k. 16k = 192
=> k2. (3. 16) = 192
=> k2. 48 = 192
=> k2 = 192 : 48 = 4
=> k = \(\pm\) 2
*Với k = 2
\(\frac{x}{3}=k\Rightarrow x=3.k=3.2=6\)
\(\frac{y}{16}=k\Rightarrow y=16.k=16.2=32\)
*Với k = -2
\(\frac{x}{3}=k\Rightarrow x=3.k=3.\left(-2\right)=-6\)
\(\frac{y}{16}=k\Rightarrow y=16.k=16.\left(-2\right)=-32\)
Vậy:..........
\(|\frac{1}{15}-x|+|\frac{2}{25}-y|+|z-\frac{16}{5}|=0\)
\(\left|\frac{1}{15}-x\right|+\left|\frac{2}{25}-y\right|+\left|z-\frac{16}{5}\right|=0\)
Ta có: \(\hept{\begin{cases}\left|\frac{1}{15}-x\right|\ge0\forall x\\\left|\frac{2}{25}-y\right|\ge0\forall y\\\left|z-\frac{16}{5}\right|\ge0\forall z\end{cases}}\)\(\Rightarrow\left|\frac{1}{15}-x\right|+\left|\frac{2}{25}-y\right|+\left|z-\frac{16}{5}\right|\ge0\forall x;y;z\)
Mà \(\left|\frac{1}{15}-x\right|+\left|\frac{2}{25}-y\right|+\left|z-\frac{16}{5}\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|\frac{1}{15}-x\right|=0\\\left|\frac{2}{25}-y\right|=0\\\left|z-\frac{16}{5}\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{15}\\y=\frac{2}{25}\\z=\frac{16}{5}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{15}\\y=\frac{2}{25}\\z=\frac{16}{5}\end{cases}}\)
Tìm x, y biết
1.\(\frac{x}{5}=\frac{y}{3}vàx^2-y^2=16\)
2. \(\frac{x}{2}=\frac{y}{5}\)và xy=10
x/5=y/3= x^2-y^2/5^2-3^2=16/16=1
x/5=1=>5
y/3=1 => 3
2) đặt x/2=y/5=k
suy ra x=2k
y=5k
x.y=2k.5k=k^2.10
mà k^2.10=10
suy ra k^2=10:10=1
suy ra k^2=1
k=1
suy ra x=2.1=2
y=5.1=5
vậy x=2 y=5
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục thực và trục ảo của các hypebol sau:
a) \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
b) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\)
c) \({x^2} - 16{y^2} = 16\)
d) \(9{x^2} - 16{y^2} = 144\)
a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {3^2}} = 5\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 6
b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {6^2}} = 10\)
Suy ra ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)
Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)
Độ dài trục thực 16
Độ dài trục ảo 12
c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)
Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)
Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {1^2}} = \sqrt {17} \)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)
Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 2
d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)
Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{4^2} + {3^2}} = 5\)
Từ đó ta có:
Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)
Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)
Độ dài trục thực 8
Độ dài trục ảo 6