Tìm x, biêt:
(1/8+1/16+1/32+1/64+1/128+1/256)*x=1/512
giúp mk nha
a, Tìm x, biết 13,44 . x - (1,6 + x) . 0,5 - 3,7 . (x - 0,9) = 13,618
b, Tính H = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
tính nhanh :1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128 + 1/256
giúp mình nha ^_^
A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>A = 2A-A =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256
tính nhanh 1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512
AI GIÚP MÌNH SẼ CHO MỘT MK
#)Giải :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Lời giải
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
1/2+1/4+1/8=1/16+1/32+1/64+1/128+1/256
giải giúp mình nha mình sẽ tick cho
Sửa đề :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Bài làm :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{128}-\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
e =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
\(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(2\times E=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\)
\(2\times E-E=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{256}\right)\)
\(E=1-\dfrac{1}{256}\)
\(E=\dfrac{256}{256}-\dfrac{1}{256}\)
\(E=\dfrac{255}{256}\)
\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\times x=1\)
= (64/256 + 32/256 + 16/256 + 8/256 + 4/256 + 2/256) X x =1
= 126 X x = 1
x = 1 : 126
x= 1/126
A= 1/4+1/8+1/16+1/32+1/64+1/128+1/256 = ?
Có :
A = \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{256}\)
\(A=\frac{128}{256}-\frac{1}{256}=\frac{127}{256}\)
1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
Tính nhanh (Tính bằng cách thuận tiện) nhé!!
Đặt A = 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
=> 2A = 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> 2A - A = 1/4 - 1/256
=> A = 64/256 - 1/256
=> A = 63/256
Đặt \(A=\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{256}\)
\(\Rightarrow A=\frac{1}{2^3}+\frac{1}{2^4}+.....+\frac{1}{2^8}\)
\(\Rightarrow2A=\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-\)\(\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow A=\frac{1}{2^2}-\frac{1}{2^8}\)
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
Tính \(S=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
Dùng sai phân như sau
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)=1-\frac{1}{256}\)
Vậy \(S=1-\frac{1}{256}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(=\frac{128+64+32+16+8+4+2+1}{256}\)
\(=\frac{255}{256}\)
#Hok tốt