Cho tam giác ABC có AD là đường phân giác của góc A biết AB = 6 cm AC = 8 cm CD = 4 cm Tính dB
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC với AD là đường phân giác của góc A , biết AB = 6 cm , AC= 8 cm , BC = 10 cm . Tính BD và CD
Áp dụng định lý Pi-ta-go, ta có:
\(BD^2=AB^2+AD^2=6^2+8^2=100\)
=> BD = 10 (cm)
AD là phân giác của góc A:
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{CD}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}\)
Mà: \(BD+CD=10\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{\left(BD+DB\right)}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\)
Cho hình vẽ bên: Biết BD CE AB AC a) Chứng minh AD AE AB AC b) Cho biết AD=2cm, BD=1cm và AC 4cm . Tính EC.
Cho tam giác ABC vuông ở A có AB = 6 cm AC = 8 cm Vẽ đường cao AH AC tính BC b Chứng minh tam giác ABC đồng dạng tam giác ahb c a chứng minh AB vuông bằng BH nhân BC nhân tính bh , b c đi Vẽ phân giác AD của góc A D thuộc BC Tính dB
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
Cho tam giác ABC vuông góc tại a,AB = 8 cm,AC = 6 cm,AD là tia phân giác của góc a
a, tính DB trên DC
b,kẻ đường cao AH.CM rằng tam giác AHB đồng dạng với tam giác CHA
c,CM tam giác AHB đồng dạng với tam giác CHA..
a) xét tg ABC có :AD là tia phân giác=>DB/AB=DC/AC=>DB/DC=AB/AC,mà AB/AC=8/6=4/3=>DB/DC=4/3
b)xét tg AHB và tg CHA có: ^AHB=^CHA=9 , ^HAB=^HCA(cùng phụ vs CAH) =>tg AHB đ.dạng vs tg CHA (g.g)
Cho tam giác ABC vuông góc tại a,AB = 8 cm,AC = 6 cm,AD là tia phân giác của góc a
a, tính DB trên DC
b,kẻ đường cao AH.CM rằng tam giác AHB đồng dạng với tam giác CHA
c,CM tam giác AHB đồng dạng với tam giác CHA..
Cho tam giác ABC, đường phân giác AD. Biết AB = 16 cm, AC = 12 cm.
a. Tính tỉ số DB và DC.
b. Từ D kẻ đường thẳng song song với AC cắt AB tại H. Biết DB = 4 cm, DC = 3 cm. Tính DH ?
a. -△ABC có AD là phân giác \(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{16}{12}=\dfrac{4}{3}\)
b. -△ABC có DH//AC \(\Rightarrow\dfrac{DH}{AC}=\dfrac{BD}{BC}=\dfrac{BD}{BD+CD}\)
\(\Rightarrow\dfrac{DH}{12}=\dfrac{4}{4+3}\Rightarrow DH=\dfrac{12.4}{4+3}=\dfrac{48}{7}\left(cm\right)\)
Cho tam giác ABC vuông A , có AB=6cm , AC=8cm . Vẽ đường cao AH.
a, Tính BC
b,CM: Tam giác ABC ~ Tam giác AHB
c,CM:\(AB^2=BH\cdot BC\).Tính BH,HC
d,Vẽ phân giác AD của góc A (D thuộc BC) Tính DB
\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)
\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)
\(d,\) Vì AD là p/g góc A
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)
Mà \(BD+DC=BC=10\)
\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
Cho tam giác ABC có AB =6 cm ,AC = 9cm ,BC = 10 cm ,đường phân giác trong AD , đường phân giác ngoài AE.
a ) Tính DB, DC , EB
b ) Đường phân giác CF của tam giác ABC cắt AD ở I .Tính tỉ số diện tích tam giác DIF và diện tích tam giác ABC
Help mình với
#Toán lớp 8
a, Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{DC}{AC}=\frac{DB}{AB}=\frac{BC}{AB+AC}=\frac{10}{15}=\frac{2}{3}\Rightarrow DC=6cm;DB=4cm\)
Cho tam giác ABC vuông tại A có AB < AC . Vẽ đường phân giác CD của tam giác ABC. Kẻ BK vuông góc với CD ( K thuộc đường thẳng CD) a) giả sử AC = 24 cm, BC = 30 cm. Tính BD / AD b) vẽ AH là đường cao của tam giác ABC. Chứng minh tam giác HBA và tam giác ABC đồng dạng. c) chứng minh DA.DB=DK.DC d) trên đoạn thẳng DC lấy điểm F sao cho BF = BA. Gọi E là giao điểm của hai đường thẳng HA và BK. Chứng minh BF vuông góc với FE
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
bài1: cho tam giác abc, đường phân giác ad chia cạnh đối diện thành các đoạn bd=2 cm; cd= 4 cm. đường trung trực của ad cắt đường thẳng bc tại k. tính kd
bài 2: cho tam giác abc và đường cao ah, ab= 5cm, bh=3cm, ac=\(\frac{20}{3}\)cm. tính góc bac
bài 3: ch tứ giác abcd, có góc dbc=900 , ad = \(\sqrt{20}cm\), ab= 4 cm, db= 6cm, dc=9 cm. CMR dc//ab