giúp mình với chứng minh :với n thuộc N;n>=2 ta có:(x^n-1)=(x-1)(x^n-1+x^n-2+...+x^2+x+1)
chứng minh rằng với mọi n thuộc N^ ta có n^5/5 +n^4/2+n^3/3-n/20 thuộc Z
bạn hãy giúp mình với! thanks!
Chứng minh rằng n/n+1 là phân số tối giản với mọi n thuộc N
Giúp mình với mai mình phải đi học rùi
Vì n và n+1 là 2 số liên tiếp
=>n và n+1 là 2 số nguyên tố cùng nhau
=>ƯCLN(n,n+1)=1
=>n/n+1 là phân số tối giản
Gọi d = ƯCLN(n;n+1) \(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản \(\forall n\in N\)
Đặt (n;n+1)=d ( d \(\in\)N*)
\(\Leftrightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Leftrightarrow\left(n+1\right)}-n⋮d\)
\(\Leftrightarrow\)1\(⋮d\)
\(\Leftrightarrow\)\(d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\)phân số \(\frac{n}{n+1}\)là phân số tối giản
Vậy \(\frac{n}{n+1}\)l là phân số tối giản với mọi n thuộc N.
Học tốt
chứng minh : 3n^2 + n chia hết cho 2 với n thuộc N
giúp mình với mình cần ngay bây giờ
1. 3.5.....(2n-1)/(n+1)(n+2)(n+3) = 1/2n với n thuộc n*
( đề bài là chứng minh rằng )
giúp mình với cảm ơn
chứng minh rằng (12n+1;30n+)=1 n thuộc Nnhanh giúp mình với ạ
Đề thiếu rồi phải là $30n+2$
Gọi $ƯCLN(12n+1,30n+2)=d(d>0)(d \in N)$
$\to \begin{cases}12n+1 \vdots d\\30n+2 \vdots d\\\end{cases}$
$\to \begin{cases}60n+5 \vdots d\\60n+4 \vdots d\\\end{cases}$
$\to 60n+5-60n-4 \vdots d$
$\to 1 \vdots d$
$\to d=1$
Vậy ƯCLN(12n+1,30n+2)
1. Tìm xy thuộc N sao cho 12xy chia hết cho 71.
2. Chứng minh rằng 11...1 ( n số 1) - n chia hết cho 3 với n thuộc N*.
3. Chứng minh rằng 2n+11...1 ( n số 1) chia hết cho 3.
Các bạn giúp mình với. Mình bị bí rồi!
b) cho n thuộc N* chứng minh rằng (3n+3, 4n+9)=1 mọi người giúp mình với!
Lời giải:
Gọi $d=(3n+3, 4n+9)$
$\Rightarrow 3n+3\vdots d; 4n+9\vdots d$
$\Rightarrow 3(4n+9)-4(3n+3)\vdots d$
$\Rightarrow 15\vdots d\Rightarrow d=1,3,5,15$
Vậy đề sai.
Chứng minh rằng với mọi n thuộc N thi UCLN(n; 2n+1) = 1
Giúp mình nhé các bạn !
Giả sử \(ƯCLN\left(n,2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow2n+1-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,n\right)=1\)
Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)
Cho S=1/3+3/3.7+5/3.7.11+7/3.7.11.15+...+2n+1/3.7.11...(4n+3),với n thuộc N*.Chứng minh rằng S<1/2
Giúp mình với,mình đang cần gấp
Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)
⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)
⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)
Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:
2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)