Tìm x,y \(\in\) N thỏa
\(9x^2+5=y.\left(y+1\right)\)
Tìm x,y\(\in\)N thỏa:
\(9x^2+5=y\left(y+1\right)\)
ai lm nhanh và đúng mình tik 10 tik
sTìm x,y\(\in\) N thỏa
\(9x^2+5=y.\left(y+1\right)\)
ta có: vế trái 9x2+5 ko chia hết cho 3
=> y(y+1) không chia hết cho 3 => y và y +1 ko chia hết cho 3
Mà y, y+1 là 2 số tự nhiên liên tiếp nên y=3k + 1, y+1 = 3k+2 (k\(\in\)N)
Phương trình trở thành:
\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow\)\(3x^2+1=3k^2+3k\) (2)
Ta có vế phải của (2) chia hết cho 3 nhưng vế trái thì ko (vô lý)
=>ko tồn tại đẳng thức
=> ko tồn tại x, y thỏa 9x^2 +5 = y(y+1)
Vậy...
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Tìm \(x,y\in N\)thỏa mãn \(x^2+y^2\cdot\left(x-y+1\right)-\left(x-1\right)\cdot y=22\)
Tìm x,y \(\in\)N:
\(9x^2+5=y\left(y+1\right)\)
\(9x^2+5\)không chia hết cho 3
\(\Rightarrow y\left(y+1\right)\)không chia hết cho 3 \(\Rightarrow\)y và y + 1 không chia hết cho 3. Mà y và y + 1 là 2 số tự nhiên liên tiếp nên y phải có dạng: y = 3k + 1 ; y + 1 = 3k + 2
Phương trình trở thành:
\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow3x^2+1=3k^2+3k\)(2)
Vế trái (2) không chia hết cho 3; Vế phải của (2) chia hết cho 3 nên (2) không có nghiệm nguyên.
Hay PT đã cho không có nghiệm x;y nguyên
không chia hết cho 3
$\Rightarrow y\left(y+1\right)$⇒y(y+1)không chia hết cho 3 $\Rightarrow$⇒y và y + 1 không chia hết cho 3. Mà y và y + 1 là 2 số tự nhiên liên tiếp nên y phải có dạng: y = 3k + 1 ; y + 1 = 3k + 2
Phương trình trở thành:
$9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow3x^2+1=3k^2+3k$9x2+5=(3k+1)(3k+2)⇔9x2+5=9k2+9k+2⇔3x2+1=3k2+3k(2)
Vế trái (2) không chia hết cho 3; Vế phải của (2) chia hết cho 3 nên (2) không có nghiệm nguyên.
Hay PT đã cho không có nghiệm x;y nguyên
Cho x;y;z > 0 thỏa mãn \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\)
Tìm Max \(Q=\frac{2x-y-z}{y+z}\)
Cho x,y thỏa mãn \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tìm MIN A= \(9x^4+7y^4-12x^2+4y^2+5\)
Tìm \(x,y\in Z\) thỏa:
\(\left(x+1\right)^2+\left(y-3\right)^2=5\)
\(\left(x+1\right)^2+\left(y-3\right)^2=5\)
Ta nhận xét VT là tổng của 2 số chính phương nên ta phải phân tích VP thành tổng của 2 số chính phương.
Mà \(5=1+4\) nên ta có
\(\left(\left(x+1\right)^2,\left(y-3\right)^2\right)=\left(1,4;4,1\right)\)
Giải ra tìm được các giá trị nguyên x, y
PS: Cái này đơn giản nên b tự làm nhé
Ta có:
5 = 1 + 4 <=> (x+1)2 = 1 và (y-3)2 = 4
=>x+1=1 hoặc x+1=-1 và => y-3=2 hoặc y-3=-2
=>x=0 hoặc x=-2 và => y=5 hoặc y=1
hay :
(x+1)2 = 4 và (y-3)2 = 1
=>x+1=2 hoặc x+1=-2 và => y-3=1 hoặc y-3=-1
=>x=1 hoặc x=-3 và => y=4 hoặc y=2
vậy (x;y)\(\in\){(0;5);(0;1);(-2;5);(-2;1);(1;4);(1;2);(-3;4);(-3;2)}
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)