thực hiện phép tính
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\))
Thực hiện phép tính
\(a,\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(b,\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(c,\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(d,\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
\(e,\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(f,\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(g,\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(h,\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
a) Ta có: \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x+2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{x^2+2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)
\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x+1}{\left(x-1\right)^2}\)
b) Ta có: \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(=\dfrac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)
\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)
\(=\dfrac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{x\left(3x+5\right)}{1+3x}\cdot\dfrac{1-3x}{2x\left(3x+5\right)}\)
\(=\dfrac{2\left(1-3x\right)}{3x+1}\)
c) Ta có: \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)
\(=\dfrac{x^2-3x+9}{x-3}\cdot\dfrac{3}{-\left(x^2-3x+9\right)}\)
\(=\dfrac{-3}{x-3}\)
thực hiện phép tính:
\(3x^n.\left(4x^{n-1}-1\right)-2x^{n+1}\left(6x^{n-2}-1\right)\)
Rút gọn biểu thức
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(=\left(18x^{2n-3}+3x^n\right)-\left(18x^{2n-3}-2x^n\right)\)
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n\)
\(=\left(18x^{2n-3}-18x^{2n-3}\right)+\left(3x^n+2x^n\right)\)
\(=5x^n\)
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n=5x^n\)
1. Thực hiện phép tính:
a. \(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
b. \(5^{n+1}-4.5^n\)
c. \(6^2.6^4-4^3\left(3^6-1\right)\)
a:
=\(18x^{2n-3}+3x^n-18^{2n-3}+2x^n\)
\(=5x^n\)
b: \(=5^n\cdot5-4\cdot5^n=5^n\)
c: \(=6^6-4^3\cdot3^6+4^3\)
\(=2^6\cdot3^6-2^6\cdot3^6+64=64\)
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\)
\(=3x^n\cdot6x^{n-3}+3x^n-2x^n\cdot9x^{n-3}+2x^n\)
\(=18x^{2n-3}+3x^n-18^{2x-3}+2x^n\)
\(=3x^n+2x^n\)
\(=5x^n\)
a. \(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\))
\(=18x^{2n-3}+3x^n-18x^{2n-3}+2x^n=5x^n\)
Thực hiện phép tính :
a, \(^{6x^n.\left(x^2-1\right)+2x.\left(3x^{n-1}+1\right)}\)
b, \(3x^{n-2}.\left(x^{n+2}y^{n+2}\right)+y^{n+2}.\left(3x^{n-2}-y^{n-2}\right)\)
c, \(4x^{n+1}-3.4^n\)
d, \(6^2.3^8.2^8-6^5.\left(6^{5-1}\right)\)
\(3x^n\left\{6x^{n-3}+1\right\}-2x^n\left\{9x^{n-3}-1\right\}\)
em can giai luon nhe
thu gọn:
\(3x^n.\left(6x^{n-3}+1\right)-2x^n.\left(9x^{n-3}-1\right)\)
\(3x^n.\left(6x^{n-3}+1\right)-2x^n.\left(9x^{n-3}-1\right)\)
\(=18x^{n+n-3}+3x^n-18x^{n+n-3}+2x^n\)
\(=18x^{2n-3}+3x^n-18^{2n-3}+2x^n\)
\(=3x^n+2x^n=x^n\left(3+2\right)=5x^n\)