Tính A= \(^{1^3+2^3+3^3+4^3+...+n^3}\)
1)tính
A=1^2+3^2+5^2+...+(2n-1)^2
B=1^3+3^3+5^3+...+(2n-1)^3
2)tính
A=1x2x3x4+2x3x4x5+...(n-2)x(n-1)
3)tính
B=1x2x4+2x3x5+...+n(n+1)x(n+3)
4)tính
C=2^2+5^2+8^2+...+(3n-1)^2
5)tính
D=1^4+2^4+3^4+...+n^4
GIÚP MÌNH VỚI MÌNH CẦN GẤP
LÀM ĐƯỢC MÌNH CHO 5 SAO
NHANH LÊN NHÉ
tính tổng dãy số:
a, A= 1 . 2 + 2 .3 + 3 . 4 + ... + n . (n+1)
b, B= 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + n . (n+1) . (n+2)
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
1) Tính: A= 2/4.7-3/5.9+2/7.10-3/9.13+..+2/301.304-3/401.405
2) Chứng minh rằng với mọi n thuộc số tự nhiên, n lớn hơn hoặc bằng 2: 3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
3) a) Cho A=9/5^2+9/11^2+9/17^2+...+9/305^2. Chứng minh A<3/4
b) Cho C=4/3+7/3^2+10/3^3+...+3n+1/3^n với số tự nhiên khác 0. Chứng minh rằng C<11/4
4) Tính: a) =1/2+1/2^2+1/2^3+...+1/2^100
b) B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
5) So sánh: (1-1/2).(1-1/3).(1-1/4). ... .(1-1/20) với 1/21
tính A=1^3+2^3+3^3+4^3+...+n^3
\(A=1^3+2^3+...+n^3\)
\(=\left(1+2+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
\(=\dfrac{n^2\left(n+1\right)^2}{4}\)
Bài 1: Co A= 3^0 + 3^2 + 3^4+ ... + 3^2002
a) Tính A
b) Chứng minh rằng A chia hết cho 7
Bài 2: Cho C =2 + 2^2 + 2^3++2^4...+ 2^100. Tính C
Bài 3 : Tính C= 3+ 3^2+3^3+..+3^100
a) Tính C
b) Tìm n biết 2.C+3=3^n
\(3A=3+3^2+...3^{2003}\)
\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)
\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
1/1*2 +1/2*3 +1/3*4 + 1/4*5 +...+1/n*(n+1) 3/1*2+3/2*3+3/3*4+3/4*5+...+3/n*(n+1) tính tổng nha các bạn
\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)
\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)
\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)
\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)
\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)
Tính tổng Sn = 1 + a + a^2 + ... + a^n
S= 1 + 2 + 2^2 + 2^3 + .... + 2^100
T= 3 _ 3^2 + 3^3 - 3^4 + .... + 3^1999 - 3^2000
Tính :
a) 1\n - 1\n+a với a ; n là số tự nhiên và n khác 0
b) 1\1*2 + 1\2*3 + 1\3*4 +...+ 1\2008*2009
c) 3\1*4 + 3\4*7 + 3\7*10 +...+ 3\94*97
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)
c) \(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}=1-\frac{1}{97}=\frac{96}{97}\)
Tính tổng
a)1-2+3-4+...+2011-2012+2013
b)Tìm n biết 3+4+5+...+n=525
c)A=2^0+2+2^2+...+2^50
d)B=3-3^2+3^3-3^4+...+3^2007-3^2008+3^2009-3^2010