Cho A=942^6 - 351^37
B=99^5 - 98^4 + 97^3 - 96^2
Chứng minh Achia hết cho 5; B chia hết cho 2 và 5
giúp mình nhanh nhé mình sẽ tick cho bạn
Chứng minh rằng:
a, 942^60 - 351^37 chia hết cho 5
b, 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Chứng minh rằng:
Câu a: 942^60-351^37 chia hết cho 5
Câu b: 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
chứng minh rằng
a, 942^60-351^37 chia hết cho 5
b,99^5-98^4+97^3-96^2 chia hết cho 2 và 5
chứng minh rằng :
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5
a = 2 + 2 mũ 2 + chấm chấm chấm + 2 mũ 39 chia hết cho 35
chứng minh rằng :
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5
a, 942^60-351^37
=(942^4)^15-351^37
=(....6)^15 -351^37
suy ra( 942^4)^15 có tận cùng là 6
357^37 có tận cùng là 1
hiệu của 942^60-351^37 có tận cùng là 5
suy ra 942^60-351^37 chia hết cho 5
a) Ta có: 942^60=(942^4)^15=...6^15=...6
351^37=...1
Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5
b) Làm tương tự câu trên
a) Ta có : 94260-35137=(9424)15-35137=(...6)15-35137=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 995=(994)(991)=(...1).(...9)=(....9)
984=(...6)
973=972.97=(...9)(..7)=(..3)
962=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
chứng minh rằng :
a) 942^60 - 351^37 chia hết cho 5
b) 242^7700-76^1025 chia hết cho 10
c) 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Câu b) 7700 cũng gần như thế thôi ông Giáo ạ
Bg
Ta có: 2427700 - 761025 = 2424.1925 - (...6)
= (2424)1925 - (...6)
= (...6)1925 - (...6)
= (...6) - (...6)
= (...0) \(⋮\)10
=> 2427700 - 761025 \(⋮\)10
=> ĐPCM
chứng minh rằng :
a) 942^60 - 351^37 chia hết cho 5
b) 242^2700-76^1025 chia hết cho 10
c) 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
a) Ta có: \(942^{60}=\left(942^4\right)^{15}=\left(\overline{...6}\right)^{15}=\overline{...6}\)
\(351^{37}=\overline{...1}\)
Vì \(\left(\overline{...6}\right)-\left(\overline{...1}\right)=\overline{...5}⋮5\) nên \(942^{60}-351^{37}⋮5\) (đpcm)
b) Ta có: \(242^{2700}=\left(2400^4\right)^{675}=\left(\overline{...6}\right)^{675}=\overline{...6}\)
\(76^{1025}=\overline{...6}\)
Vì \(\left(\overline{...6}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\) nên \(242^{2700}-76^{1025}⋮10\) (đpcm)
c) Để 995 - 984 + 973 - 962 chia hết cho cả 2 và 5 thì 995 - 984 + 973 - 962 phải chia hết cho 10
Có: \(99^5=99^2.99=\overline{...1}.99=\overline{...9}\)
\(98^4=\left(98^2\right)^2=\overline{...6}\)
\(97^3=\overline{...3}\)
\(96^2=\overline{...6}\)
\(\left(\overline{...9}\right)-\left(\overline{...6}\right)+\left(\overline{...3}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\)
\(\Rightarrow99^5-98^4+97^3-96^2⋮10\) (đpcm)
à mình nhầm câu b sửa số 242^2700 thành 242^7700 nhé
Có: \(242^{7700}=\left(242^4\right)^{1925}=\left(\overline{...6}\right)^{1925}=\overline{...6}\)
...
Đến chỗ này bn tự lm nhé, chỉ cần lấy chữ số tận cùng của 2427700 trừ đi 761025 là ra rồi.
chứng minh rằng :
a) 942^60 - 351^37 chia hết cho 5
b) 242^2700-76^1025 chia hết cho 10
c) 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Chứng minh rằng
a, 94260 - 35137 chia hết cho 5
b, 995 - 984 + 973 - 962 chia hết cho 2 và 5
a) 942^60 - 351^37 chia hết cho 5
2^1 có c/số tận củng là 2
2^2 có c/số tận củng là 4
2^3 có c/số tận củng là 8
2^4 có c/số tận củng là 6
2^5 có c/số tận củng là 2
................................
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
b/ giải thích tương tự câu a ta có
99^5 có c/số tận cùng là: 9
98^4 có c/số tận cung là: 6
97^3 có c/số tận cùng là: 3
96^2 có c/số tận cùng là: 6
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)