Những câu hỏi liên quan
ND
Xem chi tiết
TV
12 tháng 7 2021 lúc 19:58

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

Bình luận (0)
 Khách vãng lai đã xóa
PM
13 tháng 10 2021 lúc 20:44

ASDWE RHTYJNHWSAVFGB

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 12 2024 lúc 8:23

i

Bình luận (0)
LD
Xem chi tiết
H9
10 tháng 8 2023 lúc 9:21

a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)

Nên: \(10^{10}-1⋮9\)

b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)

Mà: \(1+0+...+2=3\)

Nên: \(10^{10}+2⋮3\)

c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)

Mà tổng của 2 số chẵn đó là:

\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên 

Tổng của 2 số chẵn liên tiêp ko chia hết cho 4

Bình luận (0)
H9
10 tháng 8 2023 lúc 9:28

d) Gọi hai số tự nhiên đó là: \(a,a+1\)

Tích của 2 số tự nhiên đó là:

\(a\left(a+1\right)=a^2+a\) 

Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn

Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn 

Vậy tích của hai số liên tiếp là chẵn

e) Gọi hai số đó là: \(2a,2a+2\)

Tích của hai số đó là:

\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\) 

4a(a+1) chia hết cho 8 nên

Tích của hai số tự nhiên liên tiếp chia hết cho 8

Bình luận (0)
H24
10 tháng 8 2023 lúc 9:30

d) Gọi một số tự nhiên bất kỳ là a 

\(\Rightarrow\) Số tự nhiên liền kề là a+1

Nếu a là số lẻ thì a+1 là số chẵn

\(\Rightarrow a\left(a+1\right)\) là số chẵn

Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn 

Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn

e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )

Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)

Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn

\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )

\(\Rightarrow2a\left(2a+2\right)=8k⋮8\) 

Vậy tích hai số chẵn liên tiếp chia hết cho 8

Bình luận (0)
NN
Xem chi tiết
H24
17 tháng 1 2015 lúc 20:01

Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 

Ta có :

2k(2k + 2) = 2k.2.(k + 1) = 4k(k + 1)

Vì k(k + 1) là tích của 2 số tự nhiên liên tiếp nên k(k + 1) chai hết cho 2 (1)

Mà 4 chia hết cho 4 (2)

Từ (1) và (2) suy ra 4k(k + 1) chia hết cho 2 x 4 hay 2k(2k + 2 chia hết cho 8

 Vậy tích của 2 số chẵn liên tiếp chia hết cho 8

Bình luận (0)
PT
29 tháng 10 2016 lúc 19:25

Gọi 2 số đó là 2k và 2k+2
Ta có: 2k.(2k+2)2k.(2k+2)
=4k2+4k=4k2+4k
=4k(k+1)=4k(k+1)
Có 2 trường hợp:
TH1: k chẵn
=> k chia hết cho 2
=> 4k chia hết cho 8
=> 4k(k+1) chia hết cho 8.
TH2: k lẻ
=> k+1 chia hết cho 2
=> 4k(k+1) chia hết cho 8.

Bình luận (0)
LL
Xem chi tiết
TL
7 tháng 11 2024 lúc 19:53

흘르럏스헣 허줖

Bình luận (0)
LC
Xem chi tiết
NS
Xem chi tiết
H24
14 tháng 12 2015 lúc 17:53

 Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên . 
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

TICK NHA BẠN!

Bình luận (0)
MD
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
H24
15 tháng 6 2019 lúc 13:57

gọi số chẵn thứ nhất là 2n

số chẵn thứ 2 là 2n+2

Tích của chúng là A(n) = 2n (2n + 2 ). Ta có 8 = 4.2

Do đó ta viết : A(n)= 4.n (n+1)

A(n) là tích của hai thừa số : một thừa số là 4, chia hết cho 4 và một thừa số n (n+1) chia hết cho 2. Vì vậy A(n) = 4.n (n+1) chia hết cho 4.2= 8 (đpcm)

Bình luận (0)
LL
15 tháng 6 2019 lúc 14:00

Gọi 2k và 2k + 2 là 2 số chẵn liên liếp, ta có :
2k x ( 2k + 2 ) = 4k^2+ 4k = 4k ( k + 1)
Ta có k (k + 1) luôn luôn chia hết cho 2
=> 4 x k x ( k + 1) chia hết cho 2 x 4 = 8
Vậy 4k (k + 1) chia hết cho 8
=> 2 số chẵn liên tiếp luôn chia hết cho 8

Bình luận (0)
H24
15 tháng 6 2019 lúc 14:26

Gọi hai số chắn đó là: 2n và 2n + 2

=> Tích hai số đó là:

2n(2n + 2) = 4n2 + 4n = 4n(n + 1)

Lại có 2n + 2 chia hết cho 2

=> n + 1 chia hết cho 2 (1)

Lại có: 4n chia hết cho 4 (2)

Từ (1) và (2)

=> 4n(n + 1) chia hết cho 2 x 4 = 8 (đpcm)

Chúc bạn học tốt !!!

Bình luận (0)