Tìm GTNN của biểu thức sau:
F= |x-7| + |2y-3|
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tkm GTNN hoặc GTLN của biểu thức sau:
E= -x^2 -4x - y^2 +2y+2019
F= (x-1)(x-3)+2020
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
1)Tìm GTNN của biểu thức :
\(A=\left(2x+\frac{1}{3}\right)^4-10\)
B=/2x-2/3/+(y+1/4)^4-1
b) Tìm GTLN của biểu thức sau:
\(C=-\left(\frac{3}{7}x-\frac{4}{15}\right)^6+3\)
D=-/x-3/-/2y+1/+15
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Tìm GTNN của biểu thức sau: B=(x-2y)2+y2+2x+6y+2046
\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)
\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)
Tìm GTNN của biểu thức sau : x^2y^2+x^2-xy+6x+2016
\(x^2y^2+x^2-xy+6x+2016\)
\(=\left[\left(xy\right)^2-xy+\frac{1}{4}\right]+\left(x^2+6x+9\right)+2006,75\)
\(=\left(xy-\frac{1}{2}\right)^2+\left(x+3\right)^2+2006,75\ge2006,75\forall x;y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(xy-\frac{1}{2}\right)^2=0\\\left(x+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}xy-\frac{1}{2}=0\\x=-3\end{cases}\Rightarrow}y=\frac{-1}{6}}\)
Vậy GTNN của bt = 2006,75 tại x=-3 ; y=\(\frac{-1}{6}\)
1)Tìm GTNN của biểu thức sau
a)A=5-8x-x^2
b)B=5x-3x^2
2)Tìm GTNN của biểu thức:
C=x+2y- căn2x-1 -5 căn4y-3 +13
a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\)
Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)
\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)
Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Tìm GTNN của biểu thức F = x2– 2xy + 2y2 – 2y +2022
Ai giúp mình với
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Bài 1 : Trong các biểu thức đại số sau : A=2/3xy^2z(-3x^2y)^3 ; C=-5 ; D=1/2x^2yz ; E=3/5xy^2z(-x^4y^2) ; F=3/7+x^2y a. Biểu thức nào là đơn thức ? b. Tìm các đơn thức đồng dạng và cho biết phần hệ số và phần biến của các đơn thức đó . c. Tính A +E, A-E , A*E rồi tìm bậc của đơn thức thu gọn
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha