Những câu hỏi liên quan
H24
Xem chi tiết
TL
Xem chi tiết
NT
10 tháng 3 2023 lúc 13:54

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết
GV
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 8 2017 lúc 6:05

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
ND
Xem chi tiết
NT
7 tháng 4 2023 lúc 15:28

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{3^2+3^2-BC^2}{2\cdot3\cdot3}=-\dfrac{1}{2}\)

=>18-BC^2=-9

=>BC^2=27

=>\(BC=3\sqrt{3}\left(cm\right)\)

\(\dfrac{BC}{sinA}=2R\)

=>\(2\cdot R=3\sqrt{3}:sin120=3\sqrt{3}:\dfrac{1}{2}=6\sqrt{3}\)

=>\(R=3\sqrt{3}\)

Bình luận (0)
TH
Xem chi tiết
PB
Xem chi tiết
CT
29 tháng 4 2017 lúc 11:51

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm)     (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

Bình luận (0)