Những câu hỏi liên quan
VB
Xem chi tiết
VB
6 tháng 10 2016 lúc 12:53

Trước chủ nhật 

=))

Bình luận (0)
TK
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
AH
15 tháng 1 2023 lúc 20:23

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

Bình luận (0)
VT
Xem chi tiết
HH
Xem chi tiết
LA
15 tháng 11 2016 lúc 21:17

mình mới học lớp 7 thui à

Nếu lớp 8 thì sẽ giúp bạn liền

Bình luận (0)
LT
15 tháng 11 2016 lúc 22:23
Phân tích mẫu ra hằng đẳng thức.. xong nhân đa thức thành nhân tử thử xem . Ròi rút gọn
Bình luận (0)
ND
Xem chi tiết
NM
Xem chi tiết
NK
20 tháng 6 2019 lúc 8:10

Em thử ạ. Bài dài quá em chẳng biết có tính sai chỗ nào hay không nữa ;(

Từ giả thiết ta có: 

\(\hept{\begin{cases}x+y=-\frac{2}{3}\left(z+1\right)\\xy=-\frac{1}{3}\end{cases}}\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\frac{4}{9}\left(z+1\right)^2+\frac{2}{3}\)

Và \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}\)

Ta có: \(A=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^2}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

Ơ....hình như em tính sai chỗ nào rồi:(

Bình luận (0)
PQ
20 tháng 6 2019 lúc 11:31

Nguyễn Khang 

\(A=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\) ( như này mới đúng, e thiếu -1 ở tử ) 

\(=\frac{\frac{-2}{9}\left(z+1\right)^2-\frac{2}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=-\frac{1}{2}.\frac{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-1}{2}\)

Bình luận (0)
NK
20 tháng 6 2019 lúc 18:12

Phùng Minh Quân: Thanks a,bài dài quá e chẳng biết sai chỗ nào -,-

Bình luận (0)
LS
Xem chi tiết
DH
31 tháng 10 2019 lúc 13:40

Chương I  : Số hữu tỉ. Số thực

Bình luận (0)
 Khách vãng lai đã xóa
DH
31 tháng 10 2019 lúc 13:23

Chương I  : Số hữu tỉ. Số thực

Bình luận (0)
 Khách vãng lai đã xóa
DH
31 tháng 10 2019 lúc 13:24

Chương I  : Số hữu tỉ. Số thực

Bình luận (0)
 Khách vãng lai đã xóa