Y+Z+1/X = X+Y+2/Y =X+Y-3=1/X+Y+Z
2. TÌM X BT
1+2Y/18 = 1+4Y/24 = 1+6Y/6X
X,y,z là số dương thỏa mãn đk x+y+z=a Tìm giá trị nhỏ nhất của bt Q=(1+a/x)(1+a/y)(1+a/z) helppppppp
Đề là: \(Q=\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\) đúng không em nhỉ?
Ta có:
\(Q=\left(1+\dfrac{x+y+z}{x}\right)\left(1+\dfrac{x+y+z}{y}\right)\left(1+\dfrac{x+y+z}{z}\right)\)
\(=\dfrac{\left(x+x+y+z\right)\left(x+y+y+z\right)\left(x+y+z+z\right)}{xyz}\)
\(Q\ge\dfrac{4\sqrt[4]{x^2yz}.4\sqrt[4]{xy^2z}.4\sqrt[4]{xyz^2}}{xyz}=\dfrac{64xyz}{xyz}=64\)
\(Q_{min}=64\) khi \(x=y=z=\dfrac{a}{3}\)
Tìm x,y,z bt
x/3=y/4,y/5=z/6 và z-y=40
\(\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow z=\dfrac{5y}{6}\)
mà \(z-y=40\)
\(\Rightarrow\dfrac{5y}{6}-y=40\)
\(\Rightarrow-\dfrac{y}{6}=40\)
\(\Rightarrow y=-240\Rightarrow z=40+y=40-240=-200\)
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow x=\dfrac{3y}{4}=\dfrac{3.\left(-240\right)}{4}=-180\)
Vậy \(\left\{{}\begin{matrix}x=-180\\y=-240\\z=-200\end{matrix}\right.\)
tìm x, y , z bt:
x-y=-9; y-z=-10;z+x=11
\(\hept{\begin{cases}x-y=-9\\y-z=-10\\z+x=11\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y-9\\z=10+y\\10+y+y-9=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y-9\\z=10+y\\2y=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\z=15\\y=5\end{cases}}}\)
tìm x, biết
a, |x-2| + |-17| = |-24|
b, |x| = x
c, tìm x,y,z bt |x| + |y| +|z| = 0
a)\(\left|x-2\right|+\left|-17\right|=\left|-24\right|\)
\(\left|x-2\right|+17=24\)
\(\Rightarrow\left|x-2\right|=7\)
\(\Rightarrow x-2=\hept{\begin{cases}7\\-7\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}9\\-5\end{cases}}\)
\(b,\left|x\right|=x\)
Vậy \(x\in N\)
\(c,\left|x\right|+\left|y\right|+\left|z\right|=0\)
Mà \(\left|x\right|+\left|y\right|+\left|z\right|\ge0\)
\(\Rightarrow x=0;y=0;z=0\)
\(a)\)\(\left|x-2\right|+\left|-17\right|=\left|-24\right|\)
\(\Leftrightarrow\left|x-2\right|+17=24\)
\(\Leftrightarrow\left|x-2\right|=24-17\)
\(\Leftrightarrow\left|x-2\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=7\\x-2=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=-5\end{cases}}\)
Vậy\(x\in\left\{9;-5\right\}\)
\(b)\)\(\left|x\right|=x\)
\(\Leftrightarrow x\ge0\)
Vậy\(x\ge0\)
\(c)\) Ta thấy: \(\left|x\right|\ge0\)
\(\left|y\right|\ge0\) \(\left(\forall x;y;z\right)\)
\(\left|z\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\\\left|z\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Vậy \(x=y=z=0\)
a, |x-2|+|-17|=|-24|
|x-2|+17=24
|x-2|=24-17
|x-2|=7
x=7-2
x=5
b) x= mọi số nguyên dương
E mới lên lớp 6 thui.hihi
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
Tìm x,y thuộc Z bt
a, 3xy+x-y+2=0
Cho x,y,z là các số thực dương t/m: x+y+z=3 . Tìm min BT \(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)
\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)
Tìm x,y,z bt:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)(*)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)(Dãy tỉ số bằng nhau)
\(=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\)
Thay vào (*), ta có:
\(\frac{\left(\frac{1}{2}-x\right)+1}{x}=\frac{\left(\frac{1}{2}-y\right)+2}{y}=\frac{\left(\frac{1}{2}-z\right)-3}{z}=2\)
\(\Rightarrow\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{5}{2}-y\\2z=-\frac{5}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}.\)