Tìm số nguyên n để biểu thức sau có giá trị là số nguyên: \(D=\frac{12-n}{2n-1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các số nguyên n để biểu thức sau có giá trị là số nguyên:
A = \(\dfrac{2n-1}{3-n}\)
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
tìm các số nguyên n để biểu thức 2n+1/n-1 có giá trị là số nguyên.
1. Tìm các giá trị nguyên của n để biểu thức A = \(\frac{2n+5}{n-3}\) có giá trị là một số nguyên.
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
Cho biểu thức B=\(\frac{6}{2n-1}\)với n là số nguyên.
Tìm các số nguyên n để B có giá trị là một số nguyên.
Để A nhân giá trị số nguyên thì
\(\Leftrightarrow6⋮2n-1\)
Vì n\(\in Z\Rightarrow2n-1\in Z\)
\(\Rightarrow2n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Vì 2n-1 là số lẻ
\(\Rightarrow2n-1\in\left\{\pm1;\pm3\right\}\)
Ta có bảng giá trị
2n-1 | -1 | 1 | -3 | 3 |
2n | 0 | 2 | -2 | 4 |
n | 0 | 1 | -1 | 2 |
Đối chiếu điều kiện n\(\in Z\)
Vậy n={0;1;-1;2}
Tìm các giá trị nguyên của số n để biểu thức sau nhận giá trị nguyên : \(P=\frac{n^3-2n+4}{n-1}\)
Cho A = \(\dfrac{n+10}{2n-8}\) - tìm các số nguyên n để biểu thức A có giá trị là phân số .
- tìm các số tự nhiên n để biểu thức A có giá trị là một số nguyên .
tìm n để biểu thức sau có giá trị là số nguyên
\(\frac{n^2-2n-2}{n-3}\)
Để biểu thức trên có giá trị là số nguyên
\(\Leftrightarrow n^2-2n-2⋮n-3\)
\(\Leftrightarrow n^2-3n+n-2⋮n-3\)
\(\Leftrightarrow n.\left(n-3\right)+n-2⋮n-3\)
mà \(n.\left(n-3\right)⋮n-3\)
\(\Rightarrow n-2⋮n-3\)
\(\Rightarrow n-3+1⋮n-3\)
Mà \(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{4;2\right\}\)
Vậy...
\(\text{Bài giải}\)
\(\frac{n^2-2n-2}{n-3}=\frac{n\left(n-3\right)+3n-2n-2}{n-3}=\frac{n\left(n-3\right)+n-2}{n-3}=\frac{n\left(n-3\right)+\left(n-3\right)+1}{n-3}\)
\(=\frac{\left(n+1\right)\left(n-3\right)}{n-3}+\frac{1}{n-3}=n+1+\frac{1}{n-3}\)
\(\text{Biểu thức trên nguyên khi }\frac{1}{n-3}\text{ nguyên }\Rightarrow\text{ }1\text{ }⋮\text{ }n-3\)
\(\Leftrightarrow\text{ }n-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\orbr{\begin{cases}n-3=-1\\n-3=1\end{cases}}\) \(\Rightarrow\text{ }\orbr{\begin{cases}n=-1+3\\n=1+3\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}n=2\\n=4\end{cases}}\)
\(\Rightarrow\text{ }n\in\left\{2\text{ ; }4\right\}\)
cách khác nè:3
\(A=\frac{n^2+2n-2}{n-3}=\frac{\left(n-3\right)\left(n+1\right)+1}{n-3}=n+1+\frac{1}{n-3}\)
\(\Rightarrow1⋮n-3\)
Làm tiếp như bn kia nhé !
Cho biểu thức \(P=\frac{4n+1}{2n+3}\)
a, Tìm số nguyên n để P nhận giá trị là số nguyên
b, Tìm số nguyên n để P có giá trị lớn nhất
tìm các giá trị nguyên của n để giá trị của biểu thức \(A=\dfrac{2n^2+3n+3}{2n-1}\) có giá trị là số nguyên
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)