Những câu hỏi liên quan
DN
Xem chi tiết
LK
7 tháng 5 2018 lúc 22:23

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

Bình luận (0)
NU
8 tháng 5 2018 lúc 9:27

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

Bình luận (0)
DL
Xem chi tiết
NB
Xem chi tiết
ND
13 tháng 11 2015 lúc 20:35

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

=> \(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{98.99}-\frac{1}{99.100}\)

               \(=\frac{1}{2}-\vec{\frac{1}{99.100}=\frac{4949}{99.100}}\)

\(C=\frac{4949}{2.99.100}\)

Bình luận (0)
TM
Xem chi tiết
ST
8 tháng 10 2017 lúc 14:54

Từ công thức \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\), ta có:

\(2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{a\left(a+1\right)\left(a+2\right)}\)

\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

\(2C=\frac{1}{1.2}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

\(C=\left[\frac{1}{2}-\frac{1}{\left(a+1\right)\left(a+2\right)}\right]:2=\frac{\left(a+1\right)\left(a+2\right)-2}{4\left(a+1\right)\left(a+2\right)}=\frac{a\left(a+3\right)}{4\left(a+1\right)\left(a+2\right)}\)

Bình luận (0)
HL
Xem chi tiết
LL
23 tháng 1 2022 lúc 14:12

2P=2/1.2.3+2/2.3.4+2/3.4.5+2/10.11.12
2P=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+.....+1/10.11-1/11.12
2P=1/1.2-1/11.12
2P=1/2-1/132
2P=66/132-1/132
2P=65/132
 P=65/264

Bình luận (0)
KJ
23 tháng 1 2022 lúc 14:33

\(P=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)

\(P=\dfrac{1}{2}-\dfrac{1}{11.12}\)

\(P=\dfrac{65}{132}\)

 

Bình luận (0)
HN
Xem chi tiết
SG
29 tháng 11 2016 lúc 23:07

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

Bình luận (0)
NL
Xem chi tiết
NN
17 tháng 3 2017 lúc 17:02

= 1 . 1/2 . 1/3 + 1/2 . 1/3 . 1/4 + ... + 1/37 . 1/38 . 1/39

= 1 . 1/39

= 1/39

Mong moi nguoi chi them03

Bình luận (0)
NL
17 tháng 3 2017 lúc 17:09

thank you nhe

Bình luận (0)
NL
17 tháng 3 2017 lúc 17:14

x =1/20+1/40+1/88+1/154=5/21

Bình luận (0)
PL
Xem chi tiết
TT
Xem chi tiết
HG
2 tháng 8 2015 lúc 10:59

1/1.2.3 + 1/2.3.4 +....+1/98.99.100

= 1/2 . (3-1/1.2.3 + 4-2/2.3.4 +....+ 100-98/98.99.100)

= 1/2 . (3/1.2.3 -1/1.2.3 + 4/2.3.4 - 2/2.3.4 +.......+ 100/98.99.100 - 98/98.99.100)

= 1/2 . (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +......+ 1/98.99 - 1/99.100)

= 1/2 . (1/2 - 1/9900)

= 1/2 . 4949/9900

= 4949/19800

Bình luận (0)