Biết \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\).Tính \(A=2a+2b+2c\)
Cho \(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}.Tính: \frac{2a+b}{c}+\frac{a}{2b+c}+\frac{3b}{2c+a}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)
\(\Rightarrow\frac{2a+b}{c}=\frac{3}{3}=1=\frac{a}{2b+c}=\frac{3b}{2c+a}\)
Vậy \(\frac{2a+b}{c}=\frac{a}{2b+c}=\frac{3b}{2c+a}=1\)
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
CHO \(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}\)
TíNH.\(\frac{2a+b}{c}+\frac{a}{2b+c}+\frac{3b}{2c+a}\)
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\). Tính : \(E=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
cho a,b,c khác 0 và \(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}\)
Tính \(P=\frac{2a+b}{c}+\frac{2b+c}{a}+\frac{3b}{2c+a}\)
\(Cho:\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c};trongđó:a,b,c,2b+2c-a,2c+2a-b,2a+2b-c\ne0.cmr:\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\) với a, b,c khác 0; 2a+2b khác c; 2b+2c khác a; 2c+2a khác b.
CM: \(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính: P\(\frac{2a-b}{2c-d}+\frac{2b-c}{2d-a}+\frac{2c-d}{2a-b}+\frac{2d-a}{2b-c}\)
Giúp với ai nhanh mình tick cho.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4