s=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{99.100}\)<1
mk can gap zup mk vs cac pn oi
Viết chương trình tính S=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
program Tinh_tong;
uses crt;
var S, i: longint;
begin
clrscr;
S:= 0;
i:=1;
For i:=1 to 99 do S:= S + 1/[i*(i+1)];
writeln('Tong cua S=', S);
Readln
End.
program Tinh_tong;
uses crt;
var S,i,n:longint;
begin
clrscr;
writeln('hay nhap n',); Readln(n);
S:=0;
i:=1;
For i:=\(\frac{1}{1.3}\)to\(\frac{1}{99.100}\) do \(S:=S+\frac{1}{99.100}\);
i:=i+1;
IF i<=n THEN writeln('Tong cua S=',A);
Readln
End.
var
S: real;
i: integer;
Begin
S:=0;
i:=i*(i+1);
for i:=1 to 99 do S:=S+1/i;
writeln('tong la=', S);
readln
end.
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)
TÍNH TỔNG:
\(S=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
\(=\frac{99}{100}-\frac{1}{2}\cdot\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+.... +\(\frac{1}{99.100}\)
=1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+. . . . . + \(\frac{1}{99}-\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
Kết bạn nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=?\)
Làm bậy, mà đúng
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+ … + \(\frac{1}{99.100}\)
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)-\(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+ … + \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(\frac{1}{1}\)- \(\frac{1}{100}\)
= \(\frac{99}{100}\)
1/1 . 2 + 1/ 2 . 3 + 1/ 3 . 4 + ... + 1/99 . 100
= 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1/1 - 1/100
= 100/100 + -1/100
= 99/100
#Hoq chắc _ Baccanngon
Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
A= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
⇒A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
⇒A=1 - \(\frac{1}{100}\)
⇒ A= \(\frac{99}{100}\)
Chúc bn hok tốt
Nhớ đừng quên tick cho mik nha
❤❤❤❤❤❤
Tính : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(5x-5x\)
\(????????\)
\(\text{Bn mún hỏi dj v~~~~}\)
\(5x-5x=0\)
~~~~~~~~~~~
tính \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
đặt cái trên là A
=> A=\(\frac{2-1}{1.2}+\frac{3-2}{3.2}+..+\frac{100-99}{100.99}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{99}-\frac{1}{100}\)
=1-1/100=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) tính
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+........+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Chúc bạn học tốt!!!!!!
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
A=1-1/100
A=99/100