Chứng minh rằng:Nếu S=1/22-1/24+1/26-...1/24n-2-1/24n+...+1/22002-1/22004,thì S<0,2
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Chứng minh rằng 324n+1+2 chia hết cho 11
Cho mình hỏi một câu hỏi này nhé.
(24n-1) chia hết cho (2983n+1)
(2983n+1) chia hết cho (24n-1)
(2983n+1)khác(24n-1)
Và (24n-1):(2983n+1)=(2983n+1):(24n-1)
Tính n (Những dữ liệu trên đều của 1 bài)
Ai làm đúng và nhanh nhất mình sẽ tick.
CHÚC MỪNG NĂM MỚI !
Cho mình hỏi một câu hỏi này nhé.
(24n-1) chia hết cho (2983n+1)
(2983n+1) chia hết cho (24n-1)
(2983n+1)khác(24n-1)
Và (24n-1):(2983n+1)=(2983n+1):(24n-1)
Tính n (Những dữ liệu trên đều của 1 bài)
Ai làm đúng và nhanh nhất mình sẽ tick.
Chúc các bạn học tốt
CHÚC MỪNG NĂM MỚI !
Choa S=1+2+22+23+24+25+26+27
CHỨNG MINH S CHIA HẾT CHO 3
s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]
s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]
s=[1+2] nhân[1+2+...+2 mũ 6
s=3 nhân [1+2+...+2 mũ 6]
=> s chia hết cho 3
Cho S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3.
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
chứng minh rằng:nếu ƯCLN(n,6)=1 thì n2-1 chia hết cho 24
Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.
n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2
Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1
Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)
Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)
Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)
Vậy \(n^2-1⋮24\)
Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)
\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)
Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)
Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)
Vậy \(n^2-1⋮24\)
Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)
Cho S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3
Tính S= 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 + … + 99 – 1
mik ko hỉu cho lăm:<
S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3