(1/2+1/4+1/8.....+1/256+1/512)*2=511/256
Tìm x biết
x*(1/2+1/4+1/8+...+1/512)=511/256
A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 (1)
=> 2A=1+ 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 (2)
Lấy (1)-(2)
=> 2A-A=(1+ 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256)-(1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512)
=>A=1-1/512=511/512
5* nha bạn
A= 1/2 + 1/4 + 1/8 +...+1/256 +1/512
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
D=1/2+1/4+1/8+.............+1/256+1/512
\(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow2D=1+\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{256}\)
\(\Leftrightarrow2D-D=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{256}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{512}\right)\)
\(\Leftrightarrow D=1-\dfrac{1}{512}=\dfrac{511}{512}\)
1/2+1/4+1/8+1/16+...+1/256+1/512
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}+\frac{1}{512}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A\cdot2-A=1-\frac{1}{512}\)
\(A=\frac{511}{512}\)
1/2+1/4+1/8+1/16+...+1/256+1/512(gọi A là tổng các PS trên)
A*2=(1+1/2+1/4+1/8+...+1/128+1/256)/2
A*2-A=1+1/2+1/4+1/8+...+1/128+1/256-1/2-1/4-1/8-1/16-...-1/256-1/512.
A=1-1/512
A=511/512.
Kết bạn với mình nha!
1/2 + 1/4 + 1/8 + 1/16 +...+ 1/256 + 1/512
1/2+1/4+1/8+1/16+........+1/256+1/512
Giúp mình chút nha!
Ta có :1/2+1/4=1-1/4=3/4
1/2+1/4+1/8=1-1/8=7/8
Tương tự
Vậy 1/2+1/4+1/8+1/16+....+1/256+1/512
=1-1/512
=511/512
K cho nha đảm bảo đúng 100% vì cô mk dạy rồi !
Tính tổng S = 1/2+1/4+1/8+.......+1/256+1/512
1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 – 1/2 + 1/2- 1/4 + 1/4 – 1/8 + 1/8 – 1/16 + 1/16 – 1/32 + 1/32 – 1/64 + 1/64 – 1/128 + 1/128 – 1/256 – 1/256 – 1/512
= 1 – 1/512
= 511/512 .
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024
Ta có :
1/512 = 1×2 / 512×2 = 2/1024
1/256 = 1×4 / 256×4 = 4/1024
1/128 = 1×8 / 128×8 = 8/1024
1/64 = 1×16 / 64×16 = 16/1024
1/32 = 1×32 / 32×32 = 32/1024
1/16 = 1×64 / 16×64 = 64/1024
1/8 = 1×128 / 8×128 = 128/1024
1/4 = 1×256 / 4×256 = 256/1024
1/2 = 1×512 / 2×512 = 512/1024
___________________________
=>
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024
= 512/1024 + 256/1024 + 128/1024 + 64/1024 + 32/1024 + 16/1024 + 8/1024 + 4/1024 + 2/1024 + 1/1024
= (512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1) / 1024
= 1023/1024
1/2+1/4+1/6+1/8+1/16+...+1/256+1/512 = ?
Đặt A=1/2+1/4+1/6+1/8+1/16+...+1/256+1/512
=(1/2+1/4+1/8+1/16+...+1/256+1/256-1/512)+1/6
=(1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+...+1/128-1/256+1/256-1/512)+1/6
=1-1/512+1/6
=1789/1536
Vậy A=1789/1536
1+2+4+8+.......+256+512 = ?
Các số là :
(512 + 1 ) : 1 + 1 = 512 (so )
Tổng trên là :
(512 - 1 ) .512 : 2= 130816
Vậy tổng trên bằng 130816