Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PK
Xem chi tiết
TP
26 tháng 6 2017 lúc 21:39

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{1}{5.7}+....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}+0+0+...+0\)

\(=\frac{100}{101}\)

Bình luận (0)
CB
Xem chi tiết
NN
Xem chi tiết
DP
12 tháng 7 2017 lúc 11:50

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)

\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+...+\left(1-\frac{1}{9999}\right)\)

\(=\left(1-\frac{1}{1\cdot3}\right)+\left(1-\frac{1}{3\cdot5}\right)+\left(1-\frac{1}{5\cdot7}\right)+\left(1-\frac{1}{7\cdot9}\right)+...+\left(1-\frac{1}{99\cdot101}\right)\)

\(=\left(1+1+1+1+...+1\right)-\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

Có tất cả : (101 - 3) : 2 + 1 = 50 chữ số 1 => (1 + 1 + 1 + .... + 1) = 1 x 50 = 50 

\(\Rightarrow50-\frac{1}{2}\cdot\left(1-\frac{1}{101}\right)\)

\(=50-\frac{1}{2}\cdot\frac{100}{101}=50-\frac{100}{101}=\frac{4950}{101}\)

Vậy \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}=\frac{4950}{101}\)

Bình luận (0)
GP
Xem chi tiết
UM
16 tháng 3 2017 lúc 19:58

I don't know

Bình luận (0)
LL
Xem chi tiết
TH
17 tháng 1 2016 lúc 15:17

2A=2/3.5+2/5.7+2/7.9+...+2/99.101=>2A=1/3-1/5+1/5-1/7+...+1/99-1/100=>2A=1/3-1/100=>2A=97/300=>A=97/600

Bình luận (0)
ND
17 tháng 1 2016 lúc 15:17

\(\frac{49}{303}\)

Bình luận (0)
TH
17 tháng 1 2016 lúc 15:18

hơi  nhầm số bạn thay số 100 bằng 101 nhé rồi tự tính

Bình luận (0)
HN
Xem chi tiết
TL
3 tháng 5 2015 lúc 16:24

\(M=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+...+1-\frac{1}{9999}\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)(Có (99 - 1): 2+ 1 = 50 số 1)

\(M=50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(M=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(M=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{5050-100}{101}=\frac{4950}{101}\)

Bình luận (0)
KK
3 tháng 7 2018 lúc 16:06

2

Đâu rồi

Bình luận (0)
NH
Xem chi tiết
LT
16 tháng 3 2017 lúc 17:18

\(-2\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\right)\)

\(=-2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{99.101}\right)\)\(=-2\cdot\left(\frac{1}{3}-\frac{1}{101}\right)\)

=.....

mình quên đem máy tính nên k ghi đc đấp số

THÔNG CẢM

Bình luận (0)
H24
16 tháng 3 2017 lúc 17:20

-.(2/3.5+2/5.7+...+

Bình luận (0)
NL
16 tháng 3 2017 lúc 17:27

-2/3.5+(-2/5.7)+(-2/7.9)+(-2/9.11)+.....+(-2/99.111)

Bình luận (0)
H24
Xem chi tiết
AT
15 tháng 6 2017 lúc 17:28

T nghĩ đề là phép + chứ nhỉ?! phép trừ thì s lm đc?!

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\)

\(=\dfrac{1}{2}+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{201}{202}\)

p/s: Nghĩ vậy còn đề là trừ thì ~~ Chịu ~~

Bình luận (0)
HA
15 tháng 6 2017 lúc 18:39

\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{15}-\dfrac{1}{35}-\dfrac{1}{63}-...-\dfrac{1}{9999}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{100}{101}\)

\(=\dfrac{1}{2}-\dfrac{50}{101}\)

\(=\dfrac{1}{202}.\)

Bình luận (2)
TM
Xem chi tiết
MT
31 tháng 8 2015 lúc 17:38

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)

\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

Bình luận (0)