Đại số lớp 7

H24

1/2-1/3-1/15-1/35-1/63-...-1/9999.

AT
15 tháng 6 2017 lúc 17:28

T nghĩ đề là phép + chứ nhỉ?! phép trừ thì s lm đc?!

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\)

\(=\dfrac{1}{2}+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{201}{202}\)

p/s: Nghĩ vậy còn đề là trừ thì ~~ Chịu ~~

Bình luận (0)
HA
15 tháng 6 2017 lúc 18:39

\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{15}-\dfrac{1}{35}-\dfrac{1}{63}-...-\dfrac{1}{9999}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{100}{101}\)

\(=\dfrac{1}{2}-\dfrac{50}{101}\)

\(=\dfrac{1}{202}.\)

Bình luận (2)

Các câu hỏi tương tự
NM
Xem chi tiết
NA
Xem chi tiết
CV
Xem chi tiết
NG
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
H3
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết