Những câu hỏi liên quan
DH
Xem chi tiết
YN
27 tháng 3 2022 lúc 15:10

`Answer:`

\(P=8x^2+3y^2-8xy-6y+21\)

\(=\left(8x^2-8xy+2y^2\right)+y^2-6y+9+12\)

\(=2.\left(4x^2-4xy+y^2\right)+\left(y-3\right)^2+12\)

\(=2.\left(2x-y\right)^2+\left(y-3\right)^2+12\)

\(\Rightarrow P\ge2.0+0+12=12\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
NN
23 tháng 4 2020 lúc 14:07

Ta có : 

\(P=8x^2+3y^2-8xy-6y+21\)

\(=\left(8x^2-8xy+2y^2\right)+\left(y^2-6y+9\right)+12\)

\(=2\left(4x^2-4xy+y^2\right)+\left(y-3\right)^2+12\)

\(=2\left(2x-y\right)^2+\left(y-3\right)^2+12\)

Ta có 

\(2\left(2x-y\right)^2+\left(y-3\right)^2\ge0\) với mọi x , y 

Suy ra : 

\(2\left(2x-y\right)^2+\left(y-3\right)^2+12\ge12\)

\(\Leftrightarrow P\ge12\)

 Dấu " = " xảy ra khi \(2x-y=y-3=0\) .  Suy ra  \(x=\frac{3}{2},y=3\)

Vậy GTNN của P là 12, đạt được khi \(x=\frac{3}{2},y=3\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
H24
15 tháng 11 2016 lúc 20:18

2A=(2x-y)^2+3(y-2)^2+9>=9

A>=9/2

Bình luận (0)
H24
Xem chi tiết
CP
Xem chi tiết
LD
30 tháng 8 2020 lúc 21:58

A = x2 - 10x + 12

= ( x2 - 10x + 25 ) - 13

= ( x - 5 )2 - 13

( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MinA = -13 <=> x = 5

B = 6y2 + 4y - 1

= 6( y2 + 2/3y + 1/9 ) - 5/3

= 6( y + 1/3 )2 - 5/3

6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3

Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3

=> MinB = -5/3 <=> y = -1/3

C = x2 + y2 - 2x - 6y - 1

= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11

= ( x - 1 )2 + ( y - 3 )2 - 11

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

=> MinC = -11 <=> x = 1 ; y = 3

D = 2x2 + 3y2 - x - 3y + 5

= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8

= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8

\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)

=> MinD = 33/8 <=> x = 1/4 ; y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
18 tháng 4 2017 lúc 5:41

Chọn đáp án B

Từ giả thiết ta có:

Suy ra tập hợp các điểm biểu diễn số phức z là miền mặt phẳng

(T) thỏa mãn (miền tô đậm trong hình vẽ bên

Gọi A, B là các giao điểm của đường thẳng 2 x + y + 2 = 0  và đường tròn (C’) : x - 2 2 + y + 1 2 = 25

Ta tìm được A(2; -6) và B(-2; 2)

Ta có :

Đường tròn (C) cắt miền (T) khi và chỉ khi

Bình luận (0)
TA
Xem chi tiết
NT
30 tháng 3 2022 lúc 21:29

a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)

 b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)

=8+1-2-10

=-3

Bình luận (0)
GR
30 tháng 3 2022 lúc 21:31

a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49

 b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10

=8+1-2-10

=-3

Bình luận (0)
NN
Xem chi tiết
H24
28 tháng 6 2019 lúc 12:57

                                                               Bài giải

\(B=\frac{x^2+1}{x^2-x+1}=\frac{x^2+1-x+x}{x^2-x+1}=\frac{x^2+1-x}{x^2-x+1}+\frac{x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)

\(B\) nhỏ nhất khi \(\frac{x}{x^2-x+1}\) nhỏ nhất

\(\Leftrightarrow\text{ }x\text{ nhỏ nhất}\text{ }\Rightarrow\text{ }x=0\)

Thay \(x=0\) ta có :

 \(B=\frac{x^2+1}{x^2-x+1}=\frac{0^2+1}{0^2-0+1}=\frac{1}{1}=1\)

Vậy \(GTNN\) của \(B=1\)

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 7 2019 lúc 8:43

Đáp án C

Bình luận (0)