Những câu hỏi liên quan
NX
Xem chi tiết
LD
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
BB
Xem chi tiết
ND
Xem chi tiết
KN
12 tháng 9 2020 lúc 14:37

\(A=x^4+x^3+1\) là số chính phương <=> \(k^2A,k\inℕ^∗\)cũng là số chính phương

Ở đây ta xét k=2\(\Rightarrow4A=4x^4+4x^3+4\)

Nếu \(x=1\Rightarrow4A=12\)không là số chinh phương

Xét \(2\le x\Rightarrow4\le x^2\Rightarrow4A\le4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Ý tưởng ở đây là chứng minh 4A nằm giữa 2 sô chính phương liên tiếp, từ đó ta ép 4A vào rất ít trường hợp khả thi

Vậy nên ta chứng minh \(4A>\left(2x^2+x-1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4>4x^4+x^2+1+4x^3-4x^2-2x\)

\(\Leftrightarrow3x^2+2x+3>0\)Đúng với mọi số tự nhiên x

Vậy \(\left(2x^2+x-1\right)^2< 4A\le\left(2x^2+x\right)^2\)

Lúc này 4A là số chính phương khi và chỉ khi \(4A=\left(2x^2+x\right)^2\Leftrightarrow x=2\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 8 2024 lúc 10:51

còn có 0 nữa nhé bạn. bạn xét th1 là 0

th2 là 1

và th3 mới là x lớn hơn hoặc bằng 2

Bình luận (0)
TK
Xem chi tiết
NT
2 tháng 1 2024 lúc 22:52

Để 13x+3 là số chính phương  đặt 13.x + 3 = k² (k ∈ N) => x=1

<=>13.1+3=k2

13+3=k2

16=k2

=>k=4

=>x=16

Bình luận (0)
NB
3 tháng 1 2024 lúc 8:24

x=1 hoac x=6

Bình luận (0)
PT
Xem chi tiết
HD
Xem chi tiết
OH
4 tháng 1 2018 lúc 8:54

ĐỂ n^2 +n +2 là số chính phương 
=> n^2 +n+2 =a^2 (với a thuộc n) 
=> 4n^2 +4n +8 =4a^2 
=> (2n+1)^2 +7 =4a^2 
=> 4a^2 -(2n+1)^2 =7 
=> (2a -2n -1)(2a +2n+1) =7 (1) 
do 7>0 , 2a +2n +1>0(do a,n là số tự nhiên) => 2a-2n-1 >0 
(1) => 2a-2n-1 ,2a+2n+1 thuộc ước dương của 7 mà 2a +2n +1 >2a-2n-1 
=> 
{2a+2n+1=7 (2) 
{2a-2n-1=1(3) 
=> 4n+2 =6 =. 4n +2=6 => n=4 [cái này là lấy (2)-(3) ] 
vậy n=1 là số cần tìm 
~~~~~~~~~~~~~~

bn nên sửa lại đề bài thế này :

Tìm các số tự nhiên n để n^2+n+2 là 1 số chính phương.?

tk mk nha $_$

Bình luận (0)